
Chapter 8

NP and Computational
Intractability

We now arrive at a major transition point in the book. Up until now, we’ve de-

veloped efficient algorithms for a wide range of problems and have even made

some progress on informally categorizing the problems that admit efficient

solutions—for example, problems expressible as minimum cuts in a graph, or

problems that allow a dynamic programming formulation. But although we’ve

often paused to take note of other problems that we don’t see how to solve, we

haven’t yet made any attempt to actually quantify or characterize the range of

problems that can’t be solved efficiently.

Back when we were first laying out the fundamental definitions, we settled

on polynomial time as our working notion of efficiency. One advantage of

using a concrete definition like this, as we noted earlier, is that it gives us the

opportunity to prove mathematically that certain problems cannot be solved

by polynomial-time—and hence “efficient”—algorithms.

When people began investigating computational complexity in earnest,

there was some initial progress in proving that certain extremely hard problems

cannot be solved by efficient algorithms. But for many of the most funda-

mental discrete computational problems—arising in optimization, artificial

intelligence, combinatorics, logic, and elsewhere—the question was too dif-

ficult to resolve, and it has remained open since then: We do not know of

polynomial-time algorithms for these problems, and we cannot prove that no

polynomial-time algorithm exists.

In the face of this formal ambiguity, which becomes increasingly hardened

as years pass, people working in the study of complexity have made significant

progress. A large class of problems in this “gray area” has been characterized,

and it has been proved that they are equivalent in the following sense: a

polynomial-time algorithm for any one of them would imply the existence of a

452 Chapter 8 NP and Computational Intractability

polynomial-time algorithm for all of them. These are the NP-complete problems,

a name that will make more sense as we proceed a little further. There are

literally thousands of NP-complete problems, arising in numerous areas, and

the class seems to contain a large fraction of the fundamental problems whose

complexity we can’t resolve. So the formulation of NP-completeness, and the

proof that all these problems are equivalent, is a powerful thing: it says that

all these open questions are really a single open question, a single type of

complexity that we don’t yet fully understand.

From a pragmatic point of view, NP-completeness essentially means “com-

putationally hard for all practical purposes, though we can’t prove it.” Discov-

ering that a problem is NP-complete provides a compelling reason to stop

searching for an efficient algorithm—you might as well search for an efficient

algorithm for any of the famous computational problems already known to

be NP-complete, for which many people have tried and failed to find efficient

algorithms.

8.1 Polynomial-Time Reductions
Our plan is to explore the space of computationally hard problems, eventually

arriving at a mathematical characterization of a large class of them. Our basic

technique in this exploration is to compare the relative difficulty of different

problems; we’d like to formally express statements like, “Problem X is at least

as hard as problem Y.” We will formalize this through the notion of reduction:

we will show that a particular problem X is at least as hard as some other

problem Y by arguing that, if we had a “black box” capable of solving X,

then we could also solve Y. (In other words, X is powerful enough to let us

solve Y.)

To make this precise, we add the assumption that X can be solved in

polynomial time directly to our model of computation. Suppose we had a

black box that could solve instances of a problem X; if we write down the

input for an instance of X, then in a single step, the black box will return the

correct answer. We can now ask the following question:

(∗) Can arbitrary instances of problem Y be solved using a polynomial

number of standard computational steps, plus a polynomial number of

calls to a black box that solves problem X?

If the answer to this question is yes, then we write Y ≤P X; we read this as

“Y is polynomial-time reducible to X,” or “X is at least as hard as Y (with

respect to polynomial time).” Note that in this definition, we still pay for the

time it takes to write down the input to the black box solving X, and to read

the answer that the black box provides.

8.1 Polynomial-Time Reductions 453

This formulation of reducibility is very natural. When we ask about reduc-

tions to a problem X, it is as though we’ve supplemented our computational

model with a piece of specialized hardware that solves instances of X in a

single step. We can now explore the question: How much extra power does

this piece of hardware give us?

An important consequence of our definition of ≤P is the following. Suppose

Y ≤P X and there actually exists a polynomial-time algorithm to solve X. Then

our specialized black box for X is actually not so valuable; we can replace

it with a polynomial-time algorithm for X. Consider what happens to our

algorithm for problem Y that involved a polynomial number of steps plus

a polynomial number of calls to the black box. It now becomes an algorithm

that involves a polynomial number of steps, plus a polynomial number of calls

to a subroutine that runs in polynomial time; in other words, it has become a

polynomial-time algorithm. We have therefore proved the following fact.

(8.1) Suppose Y ≤P X. If X can be solved in polynomial time, then Y can be

solved in polynomial time.

We’ve made use of precisely this fact, implicitly, at a number of earlier

points in the book. Recall that we solved the Bipartite Matching Problem using

a polynomial amount of preprocessing plus the solution of a single instance

of the Maximum-Flow Problem. Since the Maximum-Flow Problem can be

solved in polynomial time, we concluded that Bipartite Matching could as well.

Similarly, we solved the foreground/background Image Segmentation Problem

using a polynomial amount of preprocessing plus the solution of a single

instance of the Minimum-Cut Problem, with the same consequences. Both of

these can be viewed as direct applications of (8.1). Indeed, (8.1) summarizes

a great way to design polynomial-time algorithms for new problems: by

reduction to a problem we already know how to solve in polynomial time.

In this chapter, however, we will be using (8.1) to establish the computa-

tional intractability of various problems. We will be engaged in the somewhat

subtle activity of relating the tractability of problems even when we don’t know

how to solve either of them in polynomial time. For this purpose, we will really

be using the contrapositive of (8.1), which is sufficiently valuable that we’ll

state it as a separate fact.

(8.2) Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X

cannot be solved in polynomial time.

Statement (8.2) is transparently equivalent to (8.1), but it emphasizes our

overall plan: If we have a problem Y that is known to be hard, and we show

454 Chapter 8 NP and Computational Intractability

1

3

6

2

4 5

7

Figure 8.1 A graph whose

largest independent set has

size 4, and whose smallest

vertex cover has size 3.

that Y ≤P X, then the hardness has “spread” to X; X must be hard or else it

could be used to solve Y.

In reality, given that we don’t actually know whether the problems we’re

studying can be solved in polynomial time or not, we’ll be using ≤P to establish

relative levels of difficulty among problems.

With this in mind, we now establish some reducibilities among an initial

collection of fundamental hard problems.

A First Reduction: Independent Set and Vertex Cover

The Independent Set Problem, which we introduced as one of our five repre-

sentative problems in Chapter 1, will serve as our first prototypical example

of a hard problem. We don’t know a polynomial-time algorithm for it, but we

also don’t know how to prove that none exists.

Let’s review the formulation of Independent Set, because we’re going to

add one wrinkle to it. Recall that in a graph G = (V , E), we say a set of nodes

S ⊆ V is independent if no two nodes in S are joined by an edge. It is easy

to find small independent sets in a graph (for example, a single node forms

an independent set); the hard part is to find a large independent set, since

you need to build up a large collection of nodes without ever including two

neighbors. For example, the set of nodes {3, 4, 5} is an independent set of

size 3 in the graph in Figure 8.1, while the set of nodes {1, 4, 5, 6} is a larger

independent set.

In Chapter 1, we posed the problem of finding the largest independent set

in a graph G. For purposes of our current exploration in terms of reducibility,

it will be much more convenient to work with problems that have yes/no

answers only, and so we phrase Independent Set as follows.

Given a graph G and a number k, does G contain an independent set of

size at least k?

In fact, from the point of view of polynomial-time solvability, there is not a

significant difference between the optimization version of the problem (find

the maximum size of an independent set) and the decision version (decide, yes

or no, whether G has an independent set of size at least a given k). Given a

method to solve the optimization version, we automatically solve the decision

version (for any k) as well. But there is also a slightly less obvious converse

to this: If we can solve the decision version of Independent Set for every k,

then we can also find a maximum independent set. For given a graph G on n

nodes, we simply solve the decision version of Independent Set for each k; the

largest k for which the answer is “yes” is the size of the largest independent

set in G. (And using binary search, we need only solve the decision version

8.1 Polynomial-Time Reductions 455

for O(log n) different values of k.) This simple equivalence between decision

and optimization will also hold in the problems we discuss below.

Now, to illustrate our basic strategy for relating hard problems to one an-

other, we consider another fundamental graph problem for which no efficient

algorithm is known: Vertex Cover. Given a graph G = (V , E), we say that a set

of nodes S ⊆ V is a vertex cover if every edge e ∈ E has at least one end in S.

Note the following fact about this use of terminology: In a vertex cover, the

vertices do the “covering,” and the edges are the objects being “covered.” Now,

it is easy to find large vertex covers in a graph (for example, the full vertex

set is one); the hard part is to find small ones. We formulate the Vertex Cover

Problem as follows.

Given a graph G and a number k, does G contain a vertex cover of size at

most k?

For example, in the graph in Figure 8.1, the set of nodes {1, 2, 6, 7} is a vertex

cover of size 4, while the set {2, 3, 7} is a vertex cover of size 3.

We don’t know how to solve either Independent Set or Vertex Cover in

polynomial time; but what can we say about their relative difficulty? We now

show that they are equivalently hard, by establishing that Independent Set ≤P

Vertex Cover and also that Vertex Cover ≤P Independent Set. This will be a

direct consequence of the following fact.

(8.3) Let G = (V , E) be a graph. Then S is an independent set if and only if

its complement V − S is a vertex cover.

Proof. First, suppose that S is an independent set. Consider an arbitrary edge

e = (u, v). Since S is independent, it cannot be the case that both u and v are

in S; so one of them must be in V − S. It follows that every edge has at least

one end in V − S, and so V − S is a vertex cover.

Conversely, suppose that V − S is a vertex cover. Consider any two nodes

u and v in S. If they were joined by edge e, then neither end of e would lie

in V − S, contradicting our assumption that V − S is a vertex cover. It follows

that no two nodes in S are joined by an edge, and so S is an independent set.

Reductions in each direction between the two problems follow immedi-

ately from (8.3).

(8.4) Independent Set ≤P Vertex Cover.

456 Chapter 8 NP and Computational Intractability

Proof. If we have a black box to solve Vertex Cover, then we can decide

whether G has an independent set of size at least k by asking the black box

whether G has a vertex cover of size at most n − k.

(8.5) Vertex Cover ≤P Independent Set.

Proof. If we have a black box to solve Independent Set, then we can decide

whether G has a vertex cover of size at most k by asking the black box whether

G has an independent set of size at least n − k.

To sum up, this type of analysis illustrates our plan in general: although

we don’t know how to solve either Independent Set or Vertex Cover efficiently,

(8.4) and (8.5) tell us how we could solve either given an efficient solution to

the other, and hence these two facts establish the relative levels of difficulty

of these problems.

We now pursue this strategy for a number of other problems.

Reducing to a More General Case: Vertex Cover to Set Cover

Independent Set and Vertex Cover represent two different genres of problems.

Independent Set can be viewed as a packing problem: The goal is to “pack

in” as many vertices as possible, subject to conflicts (the edges) that try to

prevent one from doing this. Vertex Cover, on the other hand, can be viewed

as a covering problem: The goal is to parsimoniously “cover” all the edges in

the graph using as few vertices as possible.

Vertex Cover is a covering problem phrased specifically in the language

of graphs; there is a more general covering problem, Set Cover, in which you

seek to cover an arbitrary set of objects using a collection of smaller sets. We

can phrase Set Cover as follows.

Given a set U of n elements, a collection S1, . . . , Sm of subsets of U, and

a number k, does there exist a collection of at most k of these sets whose

union is equal to all of U?

Imagine, for example, that we have m available pieces of software, and a

set U of n capabilities that we would like our system to have. The ith piece

of software includes the set Si ⊆ U of capabilities. In the Set Cover Problem,

we seek to include a small number of these pieces of software on our system,

with the property that our system will then have all n capabilities.

Figure 8.2 shows a sample instance of the Set Cover Problem: The ten

circles represent the elements of the underlying set U, and the seven ovals and

polygons represent the sets S1, S2, . . . , S7. In this instance, there is a collection

8.1 Polynomial-Time Reductions 457

Figure 8.2 An instance of the Set Cover Problem.

of three of the sets whose union is equal to all of U: We can choose the tall

thin oval on the left, together with the two polygons.

Intuitively, it feels like Vertex Cover is a special case of Set Cover: in the

latter case, we are trying to cover an arbitrary set using arbitrary subsets, while

in the former case, we are specifically trying to cover edges of a graph using

sets of edges incident to vertices. In fact, we can show the following reduction.

(8.6) Vertex Cover ≤P Set Cover.

Proof. Suppose we have access to a black box that can solve Set Cover, and

consider an arbitrary instance of Vertex Cover, specified by a graph G = (V , E)

and a number k. How can we use the black box to help us?

458 Chapter 8 NP and Computational Intractability

Our goal is to cover the edges in E, so we formulate an instance of Set

Cover in which the ground set U is equal to E. Each time we pick a vertex in

the Vertex Cover Problem, we cover all the edges incident to it; thus, for each

vertex i ∈ V, we add a set Si ⊆ U to our Set Cover instance, consisting of all

the edges in G incident to i.

We now claim that U can be covered with at most k of the sets S1, . . . , Sn

if and only if G has a vertex cover of size at most k. This can be proved very

easily. For if Si1
, . . . , Siℓ

are ℓ ≤ k sets that cover U, then every edge in G is

incident to one of the vertices i1, . . . , iℓ, and so the set {i1, . . . , iℓ} is a vertex

cover in G of size ℓ ≤ k. Conversely, if {i1, . . . , iℓ} is a vertex cover in G of size

ℓ ≤ k, then the sets Si1
, . . . , Siℓ

cover U.

Thus, given our instance of Vertex Cover, we formulate the instance of

Set Cover described above, and pass it to our black box. We answer yes if and

only if the black box answers yes.

(You can check that the instance of Set Cover pictured in Figure 8.2 is

actually the one you’d get by following the reduction in this proof, starting

from the graph in Figure 8.1.)

Here is something worth noticing, both about this proof and about the

previous reductions in (8.4) and (8.5). Although the definition of ≤P allows us

to issue many calls to our black box for Set Cover, we issued only one. Indeed,

our algorithm for Vertex Cover consisted simply of encoding the problem as

a single instance of Set Cover and then using the answer to this instance as

our overall answer. This will be true of essentially all the reductions that we

consider; they will consist of establishing Y ≤P X by transforming our instance

of Y to a single instance of X, invoking our black box for X on this instance,

and reporting the box’s answer as our answer for the instance of Y.

Just as Set Cover is a natural generalization of Vertex Cover, there is a

natural generalization of Independent Set as a packing problem for arbitrary

sets. Specifically, we define the Set Packing Problem as follows.

Given a set U of n elements, a collection S1, . . . , Sm of subsets of U, and a

number k, does there exist a collection of at least k of these sets with the

property that no two of them intersect?

In other words, we wish to “pack” a large number of sets together, with the

constraint that no two of them are overlapping.

As an example of where this type of issue might arise, imagine that we

have a set U of n non-sharable resources, and a set of m software processes.

The ith process requires the set Si ⊆ U of resources in order to run. Then the Set

Packing Problem seeks a large collection of these processes that can be run

8.2 Reductions via “Gadgets”: The Satisfiability Problem 459

simultaneously, with the property that none of their resource requirements

overlap (i.e., represent a conflict).

There is a natural analogue to (8.6), and its proof is almost the same as

well; we will leave the details as an exercise.

(8.7) Independent Set ≤P Set Packing.

8.2 Reductions via “Gadgets”: The Satisfiability
Problem

We now introduce a somewhat more abstract set of problems, which are for-

mulated in Boolean notation. As such, they model a wide range of problems

in which we need to set decision variables so as to satisfy a given set of con-

straints; such formalisms are common, for example, in artificial intelligence.

After introducing these problems, we will relate them via reduction to the

graph- and set-based problems that we have been considering thus far.

The SAT and 3-SAT Problems

Suppose we are given a set X of n Boolean variables x1, . . . , xn; each can take

the value 0 or 1 (equivalently, “false” or “true”). By a term over X, we mean

one of the variables xi or its negation xi. Finally, a clause is simply a disjunction

of distinct terms

t1 ∨ t2 ∨ . . . ∨ tℓ.

(Again, each ti ∈ {x1, x2, . . . , xn, x1, . . . , xn}.) We say the clause has length ℓ

if it contains ℓ terms.

We now formalize what it means for an assignment of values to satisfy a

collection of clauses. A truth assignment for X is an assignment of the value 0

or 1 to each xi; in other words, it is a function ν : X → {0, 1}. The assignment

ν implicitly gives xi the opposite truth value from xi. An assignment satisfies

a clause C if it causes C to evaluate to 1 under the rules of Boolean logic; this

is equivalent to requiring that at least one of the terms in C should receive the

value 1. An assignment satisfies a collection of clauses C1, . . . , Ck if it causes

all of the Ci to evaluate to 1; in other words, if it causes the conjunction

C1 ∧ C2 ∧ . . . ∧ Ck

to evaluate to 1. In this case, we will say that ν is a satisfying assignment with

respect to C1, . . . , Ck; and that the set of clauses C1, . . . , Ck is satisfiable.

Here is a simple example. Suppose we have the three clauses

(x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3).

460 Chapter 8 NP and Computational Intractability

Then the truth assignment ν that sets all variables to 1 is not a satisfying

assignment, because it does not satisfy the second of these clauses; but the

truth assignment ν′ that sets all variables to 0 is a satisfying assignment.

We can now state the Satisfiability Problem, also referred to as SAT:

Given a set of clauses C1, . . . , Ck over a set of variables X = {x1, . . . , xn},

does there exist a satisfying truth assignment?

There is a special case of SAT that will turn out to be equivalently difficult and

is somewhat easier to think about; this is the case in which all clauses contain

exactly three terms (corresponding to distinct variables). We call this problem

3-Satisfiability, or 3-SAT:

Given a set of clauses C1, . . . , Ck, each of length 3, over a set of variables

X = {x1, . . . , xn}, does there exist a satisfying truth assignment?

Satisfiability and 3-Satisfiability are really fundamental combinatorial

search problems; they contain the basic ingredients of a hard computational

problem in very “bare-bones” fashion. We have to make n independent deci-

sions (the assignments for each xi) so as to satisfy a set of constraints. There

are several ways to satisfy each constraint in isolation, but we have to arrange

our decisions so that all constraints are satisfied simultaneously.

Reducing 3-SAT to Independent Set

We now relate the type of computational hardness embodied in SAT and 3-

SAT to the superficially different sort of hardness represented by the search for

independent sets and vertex covers in graphs. Specifically, we will show that

3-SAT ≤P Independent Set. The difficulty in proving a thing like this is clear;

3-SAT is about setting Boolean variables in the presence of constraints, while

Independent Set is about selecting vertices in a graph. To solve an instance of

3-SAT using a black box for Independent Set, we need a way to encode all these

Boolean constraints in the nodes and edges of a graph, so that satisfiability

corresponds to the existence of a large independent set.

Doing this illustrates a general principle for designing complex reductions

Y ≤P X: building “gadgets” out of components in problem X to represent what

is going on in problem Y.

(8.8) 3-SAT ≤P Independent Set.

Proof. We have a black box for Independent Set and want to solve an instance

of 3-SAT consisting of variables X = {x1, . . . , xn} and clauses C1, . . . , Ck.

The key to thinking about the reduction is to realize that there are two

conceptually distinct ways of thinking about an instance of 3-SAT.

8.2 Reductions via “Gadgets”: The Satisfiability Problem 461

v11

v12 v13

v21

v22 v23

vk1

vk2 vk3

Conflict

Any independent set

contains at most one

node from each triangle.

Conflict

Conflict

.

Figure 8.3 The reduction from 3-SAT to Independent Set.

. One way to picture the 3-SAT instance was suggested earlier: You have to

make an independent 0/1 decision for each of the n variables, and you

succeed if you manage to achieve one of three ways of satisfying each

clause.

. A different way to picture the same 3-SAT instance is as follows: You have

to choose one term from each clause, and then find a truth assignment

that causes all these terms to evaluate to 1, thereby satisfying all clauses.

So you succeed if you can select a term from each clause in such a way

that no two selected terms “conflict”; we say that two terms conflict if

one is equal to a variable xi and the other is equal to its negation xi. If

we avoid conflicting terms, we can find a truth assignment that makes

the selected terms from each clause evaluate to 1.

Our reduction will be based on this second view of the 3-SAT instance;

here is how we encode it using independent sets in a graph. First, construct a

graph G = (V , E) consisting of 3k nodes grouped into k triangles as shown in

Figure 8.3. That is, for i = 1, 2, . . . , k, we construct three vertices vi1, vi2, vi3

joined to one another by edges. We give each of these vertices a label; vij is

labeled with the jth term from the clause Ci of the 3-SAT instance.

Before proceeding, consider what the independent sets of size k look like

in this graph: Since two vertices cannot be selected from the same triangle,

they consist of all ways of choosing one vertex from each of the triangles. This

is implementing our goal of choosing a term in each clause that will evaluate

to 1; but we have so far not prevented ourselves from choosing two terms that

conflict.

462 Chapter 8 NP and Computational Intractability

We encode conflicts by adding some more edges to the graph: For each

pair of vertices whose labels correspond to terms that conflict, we add an edge

between them. Have we now destroyed all the independent sets of size k, or

does one still exist? It’s not clear; it depends on whether we can still select one

node from each triangle so that no conflicting pairs of vertices are chosen. But

this is precisely what the 3-SAT instance required.

Let’s claim, precisely, that the original 3-SAT instance is satisfiable if and

only if the graph G we have constructed has an independent set of size at least

k. First, if the 3-SAT instance is satisfiable, then each triangle in our graph

contains at least one node whose label evaluates to 1. Let S be a set consisting

of one such node from each triangle. We claim S is independent; for if there

were an edge between two nodes u, v ∈ S, then the labels of u and v would

have to conflict; but this is not possible, since they both evaluate to 1.

Conversely, suppose our graph G has an independent set S of size at least

k. Then, first of all, the size of S is exactly k, and it must consist of one node

from each triangle. Now, we claim that there is a truth assignment ν for the

variables in the 3-SAT instance with the property that the labels of all nodes

in S evaluate to 1. Here is how we could construct such an assignment ν. For

each variable xi, if neither xi nor xi appears as a label of a node in S, then we

arbitrarily set ν(xi) = 1. Otherwise, exactly one of xi or xi appears as a label

of a node in S; for if one node in S were labeled xi and another were labeled

xi, then there would be an edge between these two nodes, contradicting our

assumption that S is an independent set. Thus, if xi appears as a label of a

node in S, we set ν(xi) = 1, and otherwise we set ν(xi) = 0. By constructing ν

in this way, all labels of nodes in S will evaluate to 1.

Since G has an independent set of size at least k if and only if the original

3-SAT instance is satisfiable, the reduction is complete.

Some Final Observations: Transitivity of Reductions

We’ve now seen a number of different hard problems, of various flavors, and

we’ve discovered that they are closely related to one another. We can infer a

number of additional relationships using the following fact: ≤P is a transitive

relation.

(8.9) If Z ≤P Y, and Y ≤P X, then Z ≤P X.

Proof. Given a black box for X, we show how to solve an instance of Z;

essentially, we just compose the two algorithms implied by Z ≤P Y and Y ≤P X.

We run the algorithm for Z using a black box for Y; but each time the black

box for Y is called, we simulate it in a polynomial number of steps using the

algorithm that solves instances of Y using a black box for X.

8.3 Efficient Certification and the Definition of NP 463

Transitivity can be quite useful. For example, since we have proved

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover,

we can conclude that 3-SAT ≤P Set Cover.

8.3 Efficient Certification and the Definition of NP
Reducibility among problems was the first main ingredient in our study of

computational intractability. The second ingredient is a characterization of the

class of problems that we are dealing with. Combining these two ingredients,

together with a powerful theorem of Cook and Levin, will yield some surprising

consequences.

Recall that in Chapter 1, when we first encountered the Independent Set

Problem, we asked: Can we say anything good about it, from a computational

point of view? And, indeed, there was something: If a graph does contain an

independent set of size at least k, then we could give you an easy proof of this

fact by exhibiting such an independent set. Similarly, if a 3-SAT instance is

satisfiable, we can prove this to you by revealing the satisfying assignment. It

may be an enormously difficult task to actually find such an assignment; but

if we’ve done the hard work of finding one, it’s easy for you to plug it into the

clauses and check that they are all satisfied.

The issue here is the contrast between finding a solution and check-

ing a proposed solution. For Independent Set or 3-SAT, we do not know a

polynomial-time algorithm to find solutions; but checking a proposed solution

to these problems can be easily done in polynomial time. To see that this is

not an entirely trivial issue, consider the problem we’d face if we had to prove

that a 3-SAT instance was not satisfiable. What “evidence” could we show that

would convince you, in polynomial time, that the instance was unsatisfiable?

Problems and Algorithms

This will be the crux of our characterization; we now proceed to formalize

it. The input to a computational problem will be encoded as a finite binary

string s. We denote the length of a string s by |s|. We will identify a decision

problem X with the set of strings on which the answer is “yes.” An algorithm

A for a decision problem receives an input string s and returns the value “yes”

or “no”—we will denote this returned value by A(s). We say that A solves the

problem X if for all strings s, we have A(s) = yes if and only if s ∈ X.

As always, we say that A has a polynomial running time if there is a

polynomial function p(·) so that for every input string s, the algorithm A

terminates on s in at most O(p(|s|)) steps. Thus far in the book, we have

been concerned with problems solvable in polynomial time. In the notation

464 Chapter 8 NP and Computational Intractability

above, we can express this as the set P of all problems X for which there exists

an algorithm A with a polynomial running time that solves X.

Efficient Certification

Now, how should we formalize the idea that a solution to a problem can

be checked efficiently, independently of whether it can be solved efficiently?

A “checking algorithm” for a problem X has a different structure from an

algorithm that actually seeks to solve the problem; in order to “check” a

solution, we need the input string s, as well as a separate “certificate” string t

that contains the evidence that s is a “yes” instance of X.

Thus we say that B is an efficient certifier for a problem X if the following

properties hold.

. B is a polynomial-time algorithm that takes two input arguments s and t.

. There is a polynomial function p so that for every string s, we have s ∈ X

if and only if there exists a string t such that |t| ≤ p(|s|) and B(s, t) = yes.

It takes some time to really think through what this definition is saying.

One should view an efficient certifier as approaching a problem X from a

“managerial” point of view. It will not actually try to decide whether an input

s belongs to X on its own. Rather, it is willing to efficiently evaluate proposed

“proofs” t that s belongs to X—provided they are not too long—and it is a

correct algorithm in the weak sense that s belongs to X if and only if there

exists a proof that will convince it.

An efficient certifier B can be used as the core component of a “brute-

force” algorithm for a problem X: On an input s, try all strings t of length

≤ p(|s|), and see if B(s, t) = yes for any of these strings. But the existence of

B does not provide us with any clear way to design an efficient algorithm that

actually solves X; after all, it is still up to us to find a string t that will cause

B(s, t) to say “yes,” and there are exponentially many possibilities for t.

NP: A Class of Problems

We define NP to be the set of all problems for which there exists an efficient

certifier.1 Here is one thing we can observe immediately.

(8.10) P ⊆ NP.

1 The act of searching for a string t that will cause an efficient certifier to accept the input s is often

viewed as a nondeterministic search over the space of possible proofs t; for this reason, NP was

named as an acronym for “nondeterministic polynomial time.”

8.3 Efficient Certification and the Definition of NP 465

Proof. Consider a problem X ∈ P; this means that there is a polynomial-time

algorithm A that solves X. To show that X ∈ NP, we must show that there is

an efficient certifier B for X.

This is very easy; we design B as follows. When presented with the input

pair (s, t), the certifier B simply returns the value A(s). (Think of B as a

very “hands-on” manager that ignores the proposed proof t and simply solves

the problem on its own.) Why is B an efficient certifier for X? Clearly it has

polynomial running time, since A does. If a string s ∈ X, then for every t of

length at most p(|s|), we have B(s, t) = yes. On the other hand, if s �∈ X, then

for every t of length at most p(|s|), we have B(s, t) = no.

We can easily check that the problems introduced in the first two sections

belong to NP: it is a matter of determining how an efficient certifier for each

of them will make use of a “certificate” string t. For example:

. For the 3-Satisfiability Problem, the certificate t is an assignment of truth

values to the variables; the certifier B evaluates the given set of clauses

with respect to this assignment.

. For the Independent Set Problem, the certificate t is the identity of a set

of at least k vertices; the certifier B checks that, for these vertices, no

edge joins any pair of them.

. For the Set Cover Problem, the certificate t is a list of k sets from the

given collection; the certifier checks that the union of these sets is equal

to the underlying set U.

Yet we cannot prove that any of these problems require more than poly-

nomial time to solve. Indeed, we cannot prove that there is any problem in

NP that does not belong to P. So in place of a concrete theorem, we can only

ask a question:

(8.11) Is there a problem in NP that does not belong to P? Does P = NP?

The question of whether P = NP is fundamental in the area of algorithms,

and it is one of the most famous problems in computer science. The general

belief is that P �= NP—and this is taken as a working hypothesis throughout

the field—but there is not a lot of hard technical evidence for it. It is more based

on the sense that P = NP would be too amazing to be true. How could there

be a general transformation from the task of checking a solution to the much

harder task of actually finding a solution? How could there be a general means

for designing efficient algorithms, powerful enough to handle all these hard

problems, that we have somehow failed to discover? More generally, a huge

amount of effort has gone into failed attempts at designing polynomial-time

algorithms for hard problems in NP; perhaps the most natural explanation

466 Chapter 8 NP and Computational Intractability

for this consistent failure is that these problems simply cannot be solved in

polynomial time.

8.4 NP-Complete Problems
In the absence of progress on the P = NP question, people have turned to a

related but more approachable question: What are the hardest problems in

NP? Polynomial-time reducibility gives us a way of addressing this question

and gaining insight into the structure of NP.

Arguably the most natural way to define a “hardest” problem X is via the

following two properties: (i) X ∈ NP; and (ii) for all Y ∈ NP, Y ≤P X. In other

words, we require that every problem in NP can be reduced to X. We will call

such an X an NP-complete problem.

The following fact helps to further reinforce our use of the term hardest.

(8.12) Suppose X is an NP-complete problem. Then X is solvable in polyno-

mial time if and only if P = NP.

Proof. Clearly, if P = NP, then X can be solved in polynomial time since it

belongs to NP. Conversely, suppose that X can be solved in polynomial time.

If Y is any other problem in NP, then Y ≤P X, and so by (8.1), it follows that

Y can be solved in polynomial time. Hence NP ⊆ P; combined with (8.10),

we have the desired conclusion.

A crucial consequence of (8.12) is the following: If there is any problem in

NP that cannot be solved in polynomial time, then no NP-complete problem

can be solved in polynomial time.

Circuit Satisfiability: A First NP-Complete Problem

Our definition of NP-completeness has some very nice properties. But before

we get too carried away in thinking about this notion, we should stop to notice

something: it is not at all obvious that NP-complete problems should even

exist. Why couldn’t there exist two incomparable problems X ′ and X ′′, so that

there is no X ∈ NP with the property that X ′ ≤P X and X ′′ ≤P X? Why couldn’t

there exist an infinite sequence of problems X1, X2, X3, . . . in NP, each strictly

harder than the previous one? To prove a problem is NP-complete, one must

show how it could encode any problem in NP. This is a much trickier matter

than what we encountered in Sections 8.1 and 8.2, where we sought to encode

specific, individual problems in terms of others.

8.4 NP-Complete Problems 467

In 1971, Cook and Levin independently showed how to do this for very

natural problems in NP. Maybe the most natural problem choice for a first

NP-complete problem is the following Circuit Satisfiability Problem.

To specify this problem, we need to make precise what we mean by a

circuit. Consider the standard Boolean operators that we used to define the

Satisfiability Problem: ∧ (AND), ∨ (OR), and ¬ (NOT). Our definition of a circuit

is designed to represent a physical circuit built out of gates that implement

these operators. Thus we define a circuit K to be a labeled, directed acyclic

graph such as the one shown in the example of Figure 8.4.

. The sources in K (the nodes with no incoming edges) are labeled either

with one of the constants 0 or 1, or with the name of a distinct variable.

The nodes of the latter type will be referred to as the inputs to the circuit.

. Every other node is labeled with one of the Boolean operators ∧, ∨, or

¬; nodes labeled with ∧ or ∨ will have two incoming edges, and nodes

labeled with ¬ will have one incoming edge.

. There is a single node with no outgoing edges, and it will represent the

output: the result that is computed by the circuit.

A circuit computes a function of its inputs in the following natural way. We

imagine the edges as “wires” that carry the 0/1value at the node they emanate

from. Each node v other than the sources will take the values on its incoming

edge(s) and apply the Boolean operator that labels it. The result of this ∧, ∨,

or ¬ operation will be passed along the edge(s) leaving v. The overall value

computed by the circuit will be the value computed at the output node.

For example, consider the circuit in Figure 8.4. The leftmost two sources

are preassigned the values 1 and 0, and the next three sources constitute the

∨

1

∨

∨

∨

∨

0

Inputs:

Output:

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth

values, and one output.

468 Chapter 8 NP and Computational Intractability

inputs. If the inputs are assigned the values 1, 0, 1 from left to right, then we

get values 0, 1, 1 for the gates in the second row, values 1, 1 for the gates in

the third row, and the value 1 for the output.

Now, the Circuit Satisfiability Problem is the following. We are given a

circuit as input, and we need to decide whether there is an assignment of

values to the inputs that causes the output to take the value 1. (If so, we will

say that the given circuit is satisfiable, and a satisfying assignment is one

that results in an output of 1.) In our example, we have just seen—via the

assignment 1, 0, 1 to the inputs—that the circuit in Figure 8.4 is satisfiable.

We can view the theorem of Cook and Levin as saying the following.

(8.13) Circuit Satisfiability is NP-complete.

As discussed above, the proof of (8.13) requires that we consider an

arbitrary problem X in NP, and show that X ≤P Circuit Satisfiability. We won’t

describe the proof of (8.13) in full detail, but it is actually not so hard to

follow the basic idea that underlies it. We use the fact that any algorithm that

takes a fixed number n of bits as input and produces a yes/no answer can

be represented by a circuit of the type we have just defined: This circuit is

equivalent to the algorithm in the sense that its output is 1 on precisely the

inputs for which the algorithm outputs yes. Moreover, if the algorithm takes

a number of steps that is polynomial in n, then the circuit has polynomial

size. This transformation from an algorithm to a circuit is the part of the proof

of (8.13) that we won’t go into here, though it is quite natural given the fact

that algorithms implemented on physical computers can be reduced to their

operations on an underlying set of ∧, ∨, and ¬ gates. (Note that fixing the

number of input bits is important, since it reflects a basic distinction between

algorithms and circuits: an algorithm typically has no trouble dealing with

different inputs of varying lengths, but a circuit is structurally hard-coded with

the size of the input.)

How should we use this relationship between algorithms and circuits? We

are trying to show that X ≤P Circuit Satisfiability—that is, given an input s,

we want to decide whether s ∈ X using a black box that can solve instances

of Circuit Satisfiability. Now, all we know about X is that it has an efficient

certifier B(·, ·). So to determine whether s ∈ X, for some specific input s of

length n, we need to answer the following question: Is there a t of length p(n)

so that B(s, t) = yes?

We will answer this question by appealing to a black box for Circuit

Satisfiability as follows. Since we only care about the answer for a specific

input s, we view B(·, ·) as an algorithm on n + p(n) bits (the input s and the

8.4 NP-Complete Problems 469

certificate t), and we convert it to a polynomial-size circuit K with n + p(n)

sources. The first n sources will be hard-coded with the values of the bits in

s, and the remaining p(n) sources will be labeled with variables representing

the bits of t; these latter sources will be the inputs to K .

Now we simply observe that s ∈ X if and only if there is a way to set the

input bits to K so that the circuit produces an output of 1—in other words,

if and only if K is satisfiable. This establishes that X ≤P Circuit Satisfiability,

and completes the proof of (8.13).

An Example To get a better sense for what’s going on in the proof of (8.13),

we consider a simple, concrete example. Suppose we have the following

problem.

Given a graph G, does it contain a two-node independent set?

Note that this problem belongs to NP. Let’s see how an instance of this problem

can be solved by constructing an equivalent instance of Circuit Satisfiability.

Following the proof outline above, we first consider an efficient certifier

for this problem. The input s is a graph on n nodes, which will be specified

by
(n

2

)

bits: For each pair of nodes, there will be a bit saying whether there is

an edge joining this pair. The certificate t can be specified by n bits: For each

node, there will be a bit saying whether this node belongs to the proposed

independent set. The efficient certifier now needs to check two things: that at

least two of the bits in t are set to 1, and that no two bits in t are both set to 1

if they form the two ends of an edge (as determined by the corresponding bit

in s).

Now, for the specific input length n corresponding to the s that we are

interested in, we construct an equivalent circuit K . Suppose, for example, that

we are interested in deciding the answer to this problem for a graph G on the

three nodes u, v, w, in which v is joined to both u and w. This means that

we are concerned with an input of length n = 3. Figure 8.5 shows a circuit

that is equivalent to an efficient certifier for our problem on arbitrary three-

node graphs. (Essentially, the right-hand side of the circuit checks that at least

two nodes have been selected, and the left-hand side checks that we haven’t

selected both ends of any edge.) We encode the edges of G as constants in the

first three sources, and we leave the remaining three sources (representing the

choice of nodes to put in the independent set) as variables. Now observe that

this instance of Circuit Satisfiability is satisfiable, by the assignment 1, 0, 1 to

the inputs. This corresponds to choosing nodes u and w, which indeed form

a two-node independent set in our three-node graph G.

470 Chapter 8 NP and Computational Intractability

1

∨

∨

0

∨

∨ ∨

u,v

1

∨

v,wu,w

∨

∨ ∨ ∨

u wv

Have both ends

of some edge

been chosen?

Have at least

two nodes

been chosen?

∨

Figure 8.5 A circuit to verify whether a 3-node graph contains a 2-node independent

set.

Proving Further Problems NP-Complete

Statement (8.13) opens the door to a much fuller understanding of hard

problems in NP: Once we have our hands on a first NP-complete problem,

we can discover many more via the following simple observation.

(8.14) If Y is an NP-complete problem, and X is a problem in NP with the

property that Y ≤P X, then X is NP-complete.

Proof. Since X ∈ NP, we need only verify property (ii) of the definition. So

let Z be any problem in NP. We have Z ≤P Y, by the NP-completeness of Y,

and Y ≤P X by assumption. By (8.9), it follows that Z ≤P X.

So while proving (8.13) required the hard work of considering any pos-

sible problem in NP, proving further problems NP-complete only requires a

reduction from a single problem already known to be NP-complete, thanks to

(8.14).

8.4 NP-Complete Problems 471

In earlier sections, we have seen a number of reductions among some

basic hard problems. To establish their NP-completeness, we need to connect

Circuit Satisfiability to this set of problems. The easiest way to do this is by

relating it to the problem it most closely resembles, 3-Satisfiability.

(8.15) 3-Satisfiability is NP-complete.

Proof. Clearly 3-Satisfiability is in NP, since we can verify in polynomial time

that a proposed truth assignment satisfies the given set of clauses. We will

prove that it is NP-complete via the reduction Circuit Satisfiability ≤P 3-SAT.

Given an arbitrary instance of Circuit Satisfiability, we will first construct

an equivalent instance of SAT in which each clause contains at most three

variables. Then we will convert this SAT instance to an equivalent one in

which each clause has exactly three variables. This last collection of clauses

will thus be an instance of 3-SAT, and hence will complete the reduction.

So consider an arbitrary circuit K . We associate a variable xv with each

node v of the circuit, to encode the truth value that the circuit holds at that

node. Now we will define the clauses of the SAT problem. First we need to

encode the requirement that the circuit computes values correctly at each gate

from the input values. There will be three cases depending on the three types

of gates.

. If node v is labeled with ¬, and its only entering edge is from node u,

then we need to have xv = xu. We guarantee this by adding two clauses

(xv ∨ xu), and (xv ∨ xu).

. If node v is labeled with ∨, and its two entering edges are from nodes u

and w, we need to have xv = xu ∨ xw. We guarantee this by adding the

following clauses: (xv ∨ xu), (xv ∨ xw), and (xv ∨ xu ∨ xw).

. If node v is labeled with ∧, and its two entering edges are from nodes u

and w, we need to have xv = xu ∧ xw. We guarantee this by adding the

following clauses: (xv ∨ xu), (xv ∨ xw), and (xv ∨ xu ∨ xw).

Finally, we need to guarantee that the constants at the sources have their

specified values, and that the output evaluates to 1. Thus, for a source v that

has been labeled with a constant value, we add a clause with the single variable

xv or xv, which forces xv to take the designated value. For the output node o,

we add the single-variable clause xo, which requires that o take the value 1.

This concludes the construction.

It is not hard to show that the SAT instance we just constructed is equiva-

lent to the given instance of Circuit Satisfiability. To show the equivalence, we

need to argue two things. First suppose that the given circuit K is satisfiable.

The satisfying assignment to the circuit inputs can be propagated to create

472 Chapter 8 NP and Computational Intractability

values at all nodes in K (as we did in the example of Figure 8.4). This set of

values clearly satisfies the SAT instance we constructed.

To argue the other direction, we suppose that the SAT instance we con-

structed is satisfiable. Consider a satisfying assignment for this instance, and

look at the values of the variables corresponding to the circuit K ’s inputs. We

claim that these values constitute a satisfying assignment for the circuit K . To

see this, simply note that the SAT clauses ensure that the values assigned to

all nodes of K are the same as what the circuit computes for these nodes. In

particular, a value of 1 will be assigned to the output, and so the assignment

to inputs satisfies K .

Thus we have shown how to create a SAT instance that is equivalent to

the Circuit Satisfiability Problem. But we are not quite done, since our goal

was to create an instance of 3-SAT, which requires that all clauses have length

exactly 3—in the instance we constructed, some clauses have lengths of 1 or 2.

So to finish the proof, we need to convert this instance of SAT to an equivalent

instance in which each clause has exactly three variables.

To do this, we create four new variables: z1, z2, z3, z4. The idea is to ensure

that in any satisfying assignment, we have z1 = z2 = 0, and we do this by adding

the clauses (zi ∨ z3 ∨ z4), (zi ∨ z3 ∨ z4), (zi ∨ z3 ∨ z4), and (zi ∨ z3 ∨ z4) for each

of i = 1 and i = 2. Note that there is no way to satisfy all these clauses unless

we set z1 = z2 = 0.

Now consider a clause in the SAT instance we constructed that has a single

term t (where the term t can be either a variable or the negation of a variable).

We replace each such term by the clause (t ∨ z1 ∨ z2). Similarly, we replace

each clause that has two terms, say, (t ∨ t′), with the clause (t ∨ t′ ∨ z1). The

resulting 3-SAT formula is clearly equivalent to the SAT formula with at most

three variables in each clause, and this finishes the proof.

Using this NP-completeness result, and the sequence of reductions

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover,

summarized earlier, we can use (8.14) to conclude the following.

(8.16) All of the following problems are NP-complete: Independent Set, Set

Packing, Vertex Cover, and Set Cover.

Proof. Each of these problems has the property that it is in NP and that 3-SAT

(and hence Circuit Satisfiability) can be reduced to it.

8.5 Sequencing Problems 473

General Strategy for Proving New Problems NP-Complete

For most of the remainder of this chapter, we will take off in search of further

NP-complete problems. In particular, we will discuss further genres of hard

computational problems and prove that certain examples of these genres are

NP-complete. As we suggested initially, there is a very practical motivation

in doing this: since it is widely believed that P �= NP, the discovery that a

problem is NP-complete can be taken as a strong indication that it cannot be

solved in polynomial time.

Given a new problem X, here is the basic strategy for proving it is NP-

complete.

1. Prove that X ∈ NP.

2. Choose a problem Y that is known to be NP-complete.

3. Prove that Y ≤P X.

We noticed earlier that most of our reductions Y ≤P X consist of transform-

ing a given instance of Y into a single instance of X with the same answer. This

is a particular way of using a black box to solve X; in particular, it requires only

a single invocation of the black box. When we use this style of reduction, we

can refine the strategy above to the following outline of an NP-completeness

proof.

1. Prove that X ∈ NP.

2. Choose a problem Y that is known to be NP-complete.

3. Consider an arbitrary instance sY of problem Y, and show how to

construct, in polynomial time, an instance sX of problem X that satisfies

the following properties:

(a) If sY is a “yes” instance of Y, then sX is a “yes” instance of X.

(b) If sX is a “yes” instance of X, then sY is a “yes” instance of Y.

In other words, this establishes that sY and sX have the same answer.

There has been research aimed at understanding the distinction between

polynomial-time reductions with this special structure—asking the black box

a single question and using its answer verbatim—and the more general notion

of polynomial-time reduction that can query the black box multiple times.

(The more restricted type of reduction is known as a Karp reduction, while the

more general type is known as a Cook reduction and also as a polynomial-time

Turing reduction.) We will not be pursuing this distinction further here.

8.5 Sequencing Problems
Thus far we have seen problems that (like Independent Set and Vertex Cover)

have involved searching over subsets of a collection of objects; we have also

474 Chapter 8 NP and Computational Intractability

1

6

5

2

3

4

Figure 8.6 A directed graph

containing a Hamiltonian

cycle.

seen problems that (like 3-SAT) have involved searching over 0/1 settings to a

collection of variables. Another type of computationally hard problem involves

searching over the set of all permutations of a collection of objects.

The Traveling Salesman Problem

Probably the most famous such sequencing problem is the Traveling Salesman

Problem. Consider a salesman who must visit n cities labeled v1, v2, . . . , vn.

The salesman starts in city v1, his home, and wants to find a tour—an order

in which to visit all the other cities and return home. His goal is to find a tour

that causes him to travel as little total distance as possible.

To formalize this, we will take a very general notion of distance: for each

ordered pair of cities (vi, vj), we will specify a nonnegative number d(vi, vj)

as the distance from vi to vj. We will not require the distance to be symmetric

(so it may happen that d(vi, vj) �= d(vj , vi)), nor will we require it to satisfy

the triangle inequality (so it may happen that d(vi, vj) plus d(vj , vk) is actually

less than the “direct” distance d(vi, vk)). The reason for this is to make our

formulation as general as possible. Indeed, Traveling Salesman arises naturally

in many applications where the points are not cities and the traveler is not a

salesman. For example, people have used Traveling Salesman formulations for

problems such as planning the most efficient motion of a robotic arm that drills

holes in n points on the surface of a VLSI chip; or for serving I/O requests on

a disk; or for sequencing the execution of n software modules to minimize the

context-switching time.

Thus, given the set of distances, we ask: Order the cities into a tour

vi1
, vi2

, . . . , vin
, with i1 = 1, so as to minimize the total distance

∑

j d(vij
, vij+1

) +

d(vin
, vi1

). The requirement i1 = 1 simply “orients” the tour so that it starts at

the home city, and the terms in the sum simply give the distance from each city

on the tour to the next one. (The last term in the sum is the distance required

for the salesman to return home at the end.)

Here is a decision version of the Traveling Salesman Problem.

Given a set of distances on n cities, and a bound D, is there a tour of length

at most D?

The Hamiltonian Cycle Problem

The Traveling Salesman Problem has a natural graph-based analogue, which

forms one of the fundamental problems in graph theory. Given a directed graph

G = (V , E), we say that a cycle C in G is a Hamiltonian cycle if it visits each

vertex exactly once. In other words, it constitutes a “tour” of all the vertices,

with no repetitions. For example, the directed graph pictured in Figure 8.6 has

8.5 Sequencing Problems 475

several Hamiltonian cycles; one visits the nodes in the order 1, 6, 4, 3, 2, 5, 1,

while another visits the nodes in the order 1, 2, 4, 5, 6, 3, 1.

The Hamiltonian Cycle Problem is then simply the following:

Given a directed graph G, does it contain a Hamiltonian cycle?

Proving Hamiltonian Cycle is NP-Complete

We now show that both these problems are NP-complete. We do this by first

establishing the NP-completeness of Hamiltonian Cycle, and then proceeding

to reduce from Hamiltonian Cycle to Traveling Salesman.

(8.17) Hamiltonian Cycle is NP-complete.

Proof. We first show that Hamiltonian Cycle is in NP. Given a directed graph

G = (V , E), a certificate that there is a solution would be the ordered list of

the vertices on a Hamiltonian cycle. We could then check, in polynomial time,

that this list of vertices does contain each vertex exactly once, and that each

consecutive pair in the ordering is joined by an edge; this would establish that

the ordering defines a Hamiltonian cycle.

We now show that 3-SAT ≤P Hamiltonian Cycle. Why are we reducing

from 3-SAT? Essentially, faced with Hamiltonian Cycle, we really have no idea

what to reduce from; it’s sufficiently different from all the problems we’ve

seen so far that there’s no real basis for choosing. In such a situation, one

strategy is to go back to 3-SAT, since its combinatorial structure is very basic.

Of course, this strategy guarantees at least a certain level of complexity in the

reduction, since we need to encode variables and clauses in the language of

graphs.

So consider an arbitrary instance of 3-SAT, with variables x1, . . . , xn and

clauses C1, . . . , Ck. We must show how to solve it, given the ability to detect

Hamiltonian cycles in directed graphs. As always, it helps to focus on the

essential ingredients of 3-SAT: We can set the values of the variables however

we want, and we are given three chances to satisfy each clause.

We begin by describing a graph that contains 2n different Hamiltonian

cycles that correspond very naturally to the 2n possible truth assignments to

the variables. After this, we will add nodes to model the constraints imposed

by the clauses.

We construct n paths P1, . . . , Pn, where Pi consists of nodes vi1, vi2, . . . , vib

for a quantity b that we take to be somewhat larger than the number of clauses

k; say, b = 3k + 3. There are edges from vij to vi, j+1 and in the other direction

from vi, j+1 to vij. Thus Pi can be traversed “left to right,” from vi1 to vib, or

“right to left,” from vib to vi1.

476 Chapter 8 NP and Computational Intractability

P1

P2

P3

Hamiltonian cycles correspond to

the 2n possible truth assignments.
s

t

Figure 8.7 The reduction from 3-SAT to Hamiltonian Cycle: part 1.

We hook these paths together as follows. For each i = 1, 2, . . . , n − 1, we

define edges from vi1 to vi+1,1 and to vi+1,b. We also define edges from vib to

vi+1,1 and to vi+1,b. We add two extra nodes s and t; we define edges from s

to v11 and v1b; from vn1 and vnb to t; and from t to s.

The construction up to this point is pictured in Figure 8.7. It’s important

to pause here and consider what the Hamiltonian cycles in our graph look like.

Since only one edge leaves t, we know that any Hamiltonian cycle C must use

the edge (t , s). After entering s, the cycle C can then traverse P1 either left to

right or right to left; regardless of what it does here, it can then traverse P2

either left to right or right to left; and so forth, until it finishes traversing Pn

and enters t. In other words, there are exactly 2n different Hamiltonian cycles,

and they correspond to the n independent choices of how to traverse each Pi.

8.5 Sequencing Problems 477

This naturally models the n independent choices of how to set each vari-

ables x1, . . . , xn in the 3-SAT instance. Thus we will identify each Hamiltonian

cycle uniquely with a truth assignment as follows: If C traverses Pi left to right,

then xi is set to 1; otherwise, xi is set to 0.

Now we add nodes to model the clauses; the 3-SAT instance will turn out

to be satisfiable if and only if any Hamiltonian cycle survives. Let’s consider,

as a concrete example, a clause

C1 = x1 ∨ x2 ∨ x3.

In the language of Hamiltonian cycles, this clause says, “The cycle should

traverse P1 left to right; or it should traverse P2 right to left; or it should traverse

P3 left to right.” So we add a node c1, as in Figure 8.8, that does just this. (Note

that certain edges have been eliminated from this drawing, for the sake of

clarity.) For some value of ℓ, node c1 will have edges from v1ℓ, v2,ℓ+1, and

v3ℓ; it will have edges to v1,ℓ+1, v2,ℓ, and v3,ℓ+1. Thus it can be easily spliced

into any Hamiltonian cycle that traverses P1 left to right by visiting node c1

between v1ℓ and v1,ℓ+1; similarly, c1 can be spliced into any Hamiltonian cycle

that traverses P2 right to left, or P3 left to right. It cannot be spliced into a

Hamiltonian cycle that does not do any of these things.

More generally, we will define a node cj for each clause Cj. We will reserve

node positions 3j and 3j + 1 in each path Pi for variables that participate in

clause Cj. Suppose clause Cj contains a term t. Then if t = xi, we will add

edges (vi,3j , cj) and (cj , vi,3j+1); if t = xi, we will add edges (vi,3j+1, cj) and

(cj , vi,3j).

This completes the construction of the graph G. Now, following our

generic outline for NP-completeness proofs, we claim that the 3-SAT instance

is satisfiable if and only if G has a Hamiltonian cycle.

First suppose there is a satisfying assignment for the 3-SAT instance. Then

we define a Hamiltonian cycle following our informal plan above. If xi is

assigned 1 in the satisfying assignment, then we traverse the path Pi left to

right; otherwise we traverse Pi right to left. For each clause Cj, since it is

satisfied by the assignment, there will be at least one path Pi in which we will

be going in the “correct” direction relative to the node cj, and we can splice it

into the tour there via edges incident on vi,3j and vi,3j+1.

Conversely, suppose that there is a Hamiltonian cycle C in G. The crucial

thing to observe is the following. If C enters a node cj on an edge from vi,3j,

it must depart on an edge to vi,3j+1. For if not, then vi,3j+1 will have only one

unvisited neighbor left, namely, vi,3j+2, and so the tour will not be able to

visit this node and still maintain the Hamiltonian property. Symmetrically, if it

enters from vi,3j+1, it must depart immediately to vi,3j. Thus, for each node cj,

478 Chapter 8 NP and Computational Intractability

s

P1

P2

P3

c1 can only be visited if the

cycle traverses some path

in the correct direction.

t

c1

Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2.

the nodes immediately before and after cj in the cycle C are joined by an edge e

in G; thus, if we remove cj from the cycle and insert this edge e for each j, then

we obtain a Hamiltonian cycle C′ on the subgraph G − {c1, . . . , ck}. This is our

original subgraph, before we added the clause nodes; as we noted above, any

Hamiltonian cycle in this subgraph must traverse each Pi fully in one direction

or the other. We thus use C′ to define the following truth assignment for the

3-SAT instance. If C′ traverses Pi left to right, then we set xi = 1; otherwise we

set xi = 0. Since the larger cycle C was able to visit each clause node cj, at least

one of the paths was traversed in the “correct” direction relative to the node

cj, and so the assignment we have defined satisfies all the clauses.

8.5 Sequencing Problems 479

Having established that the 3-SAT instance is satisfiable if and only if G

has a Hamiltonian cycle, our proof is complete.

Proving Traveling Salesman is NP-Complete

Armed with our basic hardness result for Hamiltonian Cycle, we can move on

to show the hardness of Traveling Salesman.

(8.18) Traveling Salesman is NP-complete.

Proof. It is easy to see that Traveling Salesman is in NP: The certificate

is a permutation of the cities, and a certifier checks that the length of the

corresponding tour is at most the given bound.

We now show that Hamiltonian Cycle ≤P Traveling Salesman. Given

a directed graph G = (V , E), we define the following instance of Traveling

Salesman. We have a city v′
i for each node vi of the graph G. We define d(v′

i, v′
j)

to be 1 if there is an edge (vi, vj) in G, and we define it to be 2 otherwise.

Now we claim that G has a Hamiltonian cycle if and only if there is tour of

length at most n in our Traveling Salesman instance. For if G has a Hamiltonian

cycle, then this ordering of the corresponding cities defines a tour of length

n. Conversely, suppose there is a tour of length at most n. The expression for

the length of this tour is a sum of n terms, each of which is at least 1; thus it

must be the case that all the terms are equal to 1. Hence each pair of nodes

in G that correspond to consecutive cities on the tour must be connected by

an edge; it follows that the ordering of these corresponding nodes must form

a Hamiltonian cycle.

Note that allowing asymmetric distances in the Traveling Salesman Prob-

lem (d(v′
i, v′

j) �= d(v′
j , v′

i)) played a crucial role; since the graph in the Hamil-

tonian Cycle instance is directed, our reduction yielded a Traveling Salesman

instance with asymmetric distances.

In fact, the analogue of the Hamiltonian Cycle Problem for undirected

graphs is also NP-complete; although we will not prove this here, it follows

via a not-too-difficult reduction from directed Hamiltonian Cycle. Using this

undirected Hamiltonian Cycle Problem, an exact analogue of (8.18) can be

used to prove that the Traveling Salesman Problem with symmetric distances

is also NP-complete.

Of course, the most famous special case of the Traveling Salesman Problem

is the one in which the distances are defined by a set of n points in the plane.

It is possible to reduce Hamiltonian Cycle to this special case as well, though

this is much trickier.

480 Chapter 8 NP and Computational Intractability

Extensions: The Hamiltonian Path Problem

It is also sometimes useful to think about a variant of Hamiltonian Cycle in

which it is not necessary to return to one’s starting point. Thus, given a directed

graph G = (V , E), we say that a path P in G is a Hamiltonian path if it contains

each vertex exactly once. (The path is allowed to start at any node and end

at any node, provided it respects this constraint.) Thus such a path consists

of distinct nodes vi1
, vi2

, . . . , vin
in order, such that they collectively constitute

the entire vertex set V; by way of contrast with a Hamiltonian cycle, it is not

necessary for there to be an edge from vin
back to vi1

. Now, the Hamiltonian

Path Problem asks:

Given a directed graph G, does it contain a Hamiltonian path?

Using the hardness of Hamiltonian Cycle, we show the following.

(8.19) Hamiltonian Path is NP-complete.

Proof. First of all, Hamiltonian Path is in NP: A certificate could be a path in

G, and a certifier could then check that it is indeed a path and that it contains

each node exactly once.

One way to show that Hamiltonian Path is NP-complete is to use a reduc-

tion from 3-SAT that is almost identical to the one we used for Hamiltonian

Cycle: We construct the same graph that appears in Figure 8.7, except that we

do not include an edge from t to s. If there is any Hamiltonian path in this

modified graph, it must begin at s (since s has no incoming edges) and end

at t (since t has no outgoing edges). With this one change, we can adapt the

argument used in the Hamiltonian Cycle reduction more or less word for word

to argue that there is a satisfying assignment for the instance of 3-SAT if and

only if there is a Hamiltonian path.

An alternate way to show that Hamiltonian Path is NP-complete is to prove

that Hamiltonian Cycle ≤P Hamiltonian Path. Given an instance of Hamiltonian

Cycle, specified by a directed graph G, we construct a graph G′ as follows. We

choose an arbitrary node v in G and replace it with two new nodes v′ and v′′.

All edges out of v in G are now out of v′; and all edges into v in G are now

into v′′. More precisely, each edge (v, w) in G is replaced by an edge (v′, w);

and each edge (u, v) in G is replaced by an edge (u, v′′). This completes the

construction of G′.

We claim that G′ contains a Hamiltonian path if and only if G contains a

Hamiltonian cycle. Indeed, suppose C is a Hamiltonian cycle in G, and consider

traversing it beginning and ending at node v. It is easy to see that the same

ordering of nodes forms a Hamiltonian path in G′ that begins at v′ and ends at

v′′. Conversely, suppose P is a Hamiltonian path in G′. Clearly P must begin

8.6 Partitioning Problems 481

at v′ (since v′ has no incoming edges) and end at v′′ (since v′′ has no outgoing

edges). If we replace v′ and v′′ with v, then this ordering of nodes forms a

Hamiltonian cycle in G.

8.6 Partitioning Problems
In the next two sections, we consider two fundamental partitioning problems,

in which we are searching over ways of dividing a collection of objects into

subsets. Here we show the NP-completeness of a problem that we call 3-

Dimensional Matching. In the next section we consider Graph Coloring, a

problem that involves partitioning the nodes of a graph.

The 3-Dimensional Matching Problem

We begin by discussing the 3-Dimensional Matching Problem, which can

be motivated as a harder version of the Bipartite Matching Problem that

we considered earlier. We can view the Bipartite Matching Problem in the

following way: We are given two sets X and Y , each of size n, and a set P of

pairs drawn from X × Y. The question is: Does there exist a set of n pairs in P

so that each element in X ∪ Y is contained in exactly one of these pairs? The

relation to Bipartite Matching is clear: the set P of pairs is simply the edges of

the bipartite graph.

Now Bipartite Matching is a problem we know how to solve in polynomial

time. But things get much more complicated when we move from ordered pairs

to ordered triples. Consider the following 3-Dimensional Matching Problem:

Given disjoint sets X, Y, and Z, each of size n, and given a set T ⊆

X × Y × Z of ordered triples, does there exist a set of n triples in T so

that each element of X ∪ Y ∪ Z is contained in exactly one of these triples?

Such a set of triples is called a perfect three-dimensional matching.

An interesting thing about 3-Dimensional Matching, beyond its relation to

Bipartite Matching, is that it simultaneously forms a special case of both Set

Cover and Set Packing: we are seeking to cover the ground set X ∪ Y ∪ Z with a

collection of disjoint sets. More concretely, 3-Dimensional Matching is a special

case of Set Cover since we seek to cover the ground set U = X ∪ Y ∪ Z using

at most n sets from a given collection (the triples). Similarly, 3-Dimensional

Matching is a special case of Set Packing, since we are seeking n disjoint

subsets of the ground set U = X ∪ Y ∪ Z.

Proving 3-Dimensional Matching Is NP-Complete

The arguments above can be turned quite easily into proofs that 3-Dimensional

Matching ≤P Set Cover and that 3-Dimensional Matching ≤P Set Packing.

482 Chapter 8 NP and Computational Intractability

But this doesn’t help us establish the NP-completeness of 3-Dimensional

Matching, since these reductions simply show that 3-Dimensional Matching

can be reduced to some very hard problems. What we need to show is the other

direction: that a known NP-complete problem can be reduced to 3-Dimensional

Matching.

(8.20) 3-Dimensional Matching is NP-complete.

Proof. Not surprisingly, it is easy to prove that 3-Dimensional Matching is in

NP. Given a collection of triples T ⊂ X × Y × Z, a certificate that there is a

solution could be a collection of triples T ′ ⊆ T. In polynomial time, one could

verify that each element in X ∪ Y ∪ Z belongs to exactly one of the triples in T ′.

For the reduction, we again return all the way to 3-SAT. This is perhaps a

little more curious than in the case of Hamiltonian Cycle, since 3-Dimensional

Matching is so closely related to both Set Packing and Set Cover; but in fact the

partitioning requirement is very hard to encode using either of these problems.

Thus, consider an arbitrary instance of 3-SAT, with n variables x1, . . . , xn

and k clauses C1, . . . , Ck. We will show how to solve it, given the ability to

detect perfect three-dimensional matchings.

The overall strategy in this reduction will be similar (at a very high level)

to the approach we followed in the reduction from 3-SAT to Hamiltonian Cycle.

We will first design gadgets that encode the independent choices involved in

the truth assignment to each variable; we will then add gadgets that encode

the constraints imposed by the clauses. In performing this construction, we

will initially describe all the elements in the 3-Dimensional Matching instance

simply as “elements,” without trying to specify for each one whether it comes

from X, Y, or Z. At the end, we will observe that they naturally decompose

into these three sets.

Here is the basic gadget associated with variable xi. We define elements

Ai = {ai1, ai2, . . . , ai,2k} that constitute the core of the gadget; we define

elements Bi = {bi1, . . . , bi,2k} at the tips of the gadget. For each j = 1, 2, . . . , 2k,

we define a triple tij = (aij , ai, j+1, bij), where we interpret addition modulo 2k.

Three of these gadgets are pictured in Figure 8.9. In gadget i, we will call a

triple tij even if j is even, and odd if j is odd. In an analogous way, we will

refer to a tip bij as being either even or odd.

These will be the only triples that contain the elements in Ai, so we

can already say something about how they must be covered in any perfect

matching: we must either use all the even triples in gadget i, or all the odd

triples in gadget i. This will be our basic way of encoding the idea that xi can

8.6 Partitioning Problems 483

Clause 1

The clause elements can only be

matched if some variable gadget

leaves the corresponding tip free.

Core

Variable 1 Variable 2 Variable 3

Tips

Figure 8.9 The reduction from 3-SAT to 3-Dimensional Matching.

be set to either 0 or 1; if we select all the even triples, this will represent setting

xi = 0, and if we select all the odd triples, this will represent setting xi = 1.

Here is another way to view the odd/even decision, in terms of the tips of

the gadget. If we decide to use the even triples, we cover the even tips of the

gadget and leave the odd tips free. If we decide to use the odd triples, we cover

the odd tips of the gadget and leave the even tips free. Thus our decision of

how to set xi can be viewed as follows: Leaving the odd tips free corresponds

to 0, while leaving the even tips free corresponds to 1. This will actually be the

more useful way to think about things in the remainder of the construction.

So far we can make this even/odd choice independently for each of the n

variable gadgets. We now add elements to model the clauses and to constrain

the assignments we can choose. As in the proof of (8.17), let’s consider the

example of a clause

C1 = x1 ∨ x2 ∨ x3.

In the language of three-dimensional matchings, it tells us, “The matching on

the cores of the gadgets should leave the even tips of the first gadget free; or it

should leave the odd tips of the second gadget free; or it should leave the even

tips of the third gadget free.” So we add a clause gadget that does precisely

484 Chapter 8 NP and Computational Intractability

this. It consists of a set of two core elements P1 = {p1, p′
1}, and three triples

that contain them. One has the form (p1, p′
1, b1j) for an even tip b1j; another

includes p1, p′
1, and an odd tip b2, j′; and a third includes p1, p′

1, and an even

tip b3, j′′. These are the only three triples that cover P1, so we know that one of

them must be used; this enforces the clause constraint exactly.

In general, for clause Cj, we create a gadget with two core elements

Pj = {pj , p′
j}, and we define three triples containing Pj as follows. Suppose clause

Cj contains a term t. If t = xi, we define a triple (pj , p′
j , bi,2j); if t = xi, we define

a triple (pj , p′
j , bi,2j−1). Note that only clause gadget j makes use of tips bim with

m = 2j or m = 2j − 1; thus, the clause gadgets will never “compete” with each

other for free tips.

We are almost done with the construction, but there’s still one problem.

Suppose the set of clauses has a satisfying assignment. Then we make the

corresponding choices of odd/even for each variable gadget; this leaves at

least one free tip for each clause gadget, and so all the core elements of the

clause gadgets get covered as well. The problem is that we haven’t covered all

the tips. We started with n · 2k = 2nk tips; the triples {tij} covered nk of them;

and the clause gadgets covered an additional k of them. This leaves (n − 1)k

tips left to be covered.

We handle this problem with a very simple trick: we add (n − 1)k “cleanup

gadgets” to the construction. Cleanup gadget i consists of two core elements

Qi = {qi, q′
i}, and there is a triple (qi, qi, b) for every tip b in every variable

gadget. This is the final piece of the construction.

Thus, if the set of clauses has a satisfying assignment, then we make the

corresponding choices of odd/even for each variable gadget; as before, this

leaves at least one free tip for each clause gadget. Using the cleanup gadgets

to cover the remaining tips, we see that all core elements in the variable, clause,

and cleanup gadgets have been covered, and all tips have been covered as well.

Conversely, suppose there is a perfect three-dimensional matching in the

instance we have constructed. Then, as we argued above, in each variable

gadget the matching chooses either all the even {tij} or all the odd {tij}. In the

former case, we set xi = 0 in the 3-SAT instance; and in the latter case, we

set xi = 1. Now consider clause Cj; has it been satisfied? Because the two core

elements in Pj have been covered, at least one of the three variable gadgets

corresponding to a term in Cj made the “correct” odd/even decision, and this

induces a variable assignment that satisfies Cj.

This concludes the proof, except for one last thing to worry about: Have

we really constructed an instance of 3-Dimensional Matching? We have a

collection of elements, and triples containing certain of them, but can the

elements really be partitioned into appropriate sets X, Y, and Z of equal size?

8.7 Graph Coloring 485

Fortunately, the answer is yes. We can define X to be set of all aij with j

even, the set of all pj, and the set of all qi. We can define Y to be set of all aij

with j odd, the set of all p′
j, and the set of all q′

i. Finally, we can define Z to

be the set of all tips bij. It is now easy to check that each triple consists of one

element from each of X, Y, and Z.

8.7 Graph Coloring
When you color a map (say, the states in a U.S. map or the countries on a

globe), the goal is to give neighboring regions different colors so that you can

see their common borders clearly while minimizing visual distraction by using

only a few colors. In the middle of the 19th century, Francis Guthrie noticed

that you could color a map of the counties of England this way with only

four colors, and he wondered whether the same was true for every map. He

asked his brother, who relayed the question to one of his professors, and thus

a famous mathematical problem was born: the Four-Color Conjecture.

The Graph Coloring Problem

Graph coloring refers to the same process on an undirected graph G, with the

nodes playing the role of the regions to be colored, and the edges representing

pairs that are neighbors. We seek to assign a color to each node of G so

that if (u, v) is an edge, then u and v are assigned different colors; and

the goal is to do this while using a small set of colors. More formally, a k-

coloring of G is a function f : V → {1, 2, . . . , k} so that for every edge (u, v),

we have f (u) �= f (v). (So the available colors here are named 1, 2, . . . , k, and

the function f represents our choice of a color for each node.) If G has a

k-coloring, then we will say that it is a k-colorable graph.

In contrast with the case of maps in the plane, it’s clear that there’s not

some fixed constant k so that every graph has a k-coloring: For example, if

we take a set of n nodes and join each pair of them by an edge, the resulting

graph needs n colors. However, the algorithmic version of the problem is very

interesting:

Given a graph G and a bound k, does G have a k-coloring?

We will refer to this as the Graph Coloring Problem, or as k-Coloring when we

wish to emphasize a particular choice of k.

Graph Coloring turns out to be a problem with a wide range of appli-

cations. While it’s not clear there’s ever been much genuine demand from

cartographers, the problem arises naturally whenever one is trying to allocate

resources in the presence of conflicts.

486 Chapter 8 NP and Computational Intractability

. Suppose, for example, that we have a collection of n processes on a

system that can run multiple jobs concurrently, but certain pairs of jobs

cannot be scheduled at the same time because they both need a particular

resource. Over the next k time steps of the system, we’d like to schedule

each process to run in at least one of them. Is this possible? If we construct

a graph G on the set of processes, joining two by an edge if they have a

conflict, then a k-coloring of G represents a conflict-free schedule of the

processes: all nodes colored j can be scheduled in step j, and there will

never be contention for any of the resources.

. Another well-known application arises in the design of compilers. Sup-

pose we are compiling a program and are trying to assign each variable

to one of k registers. If two variables are in use at a common point in

time, then they cannot be assigned to the same register. (Otherwise one

would end up overwriting the other.) Thus we can build a graph G on

the set of variables, joining two by an edge if they are both in use at the

same time. Now a k-coloring of G corresponds to a safe way of allocating

variables to registers: All nodes colored j can be assigned to register j,

since no two of them are in use at the same time.

. A third application arises in wavelength assignment for wireless commu-

nication devices: We’d like to assign one of k transmitting wavelengths

to each of n devices; but if two devices are sufficiently close to each

other, then they need to be assigned different wavelengths to prevent

interference. To deal with this, we build a graph G on the set of devices,

joining two nodes if they’re close enough to interfere with each other;

a k-coloring of this graph is now an assignment of wavelengths so that

any nodes assigned the same wavelength are far enough apart that in-

terference won’t be a problem. (Interestingly, this is an application of

graph coloring where the “colors” being assigned to nodes are positions

on the electromagnetic spectrum—in other words, under a slightly liberal

interpretation, they’re actually colors.)

The Computational Complexity of Graph Coloring

What is the complexity of k-Coloring? First of all, the case k = 2 is a problem

we’ve already seen in Chapter 3. Recall, there, that we considered the problem

of determining whether a graph G is bipartite, and we showed that this is

equivalent to the following question: Can one color the nodes of G red and

blue so that every edge has one red end and one blue end?

But this latter question is precisely the Graph Coloring Problem in the case

when there are k = 2 colors (i.e., red and blue) available. Thus we have argued

that

8.7 Graph Coloring 487

Figure 8.10 A graph that is

not 3-colorable.

(8.21) A graph G is 2-colorable if and only if it is bipartite.

This means we can use the algorithm from Section 3.4 to decide whether

an input graph G is 2-colorable in O(m + n) time, where n is the number of

nodes of G and m is the number of edges.

As soon as we move up to k = 3 colors, things become much harder. No

simple efficient algorithm for the 3-Coloring Problem suggests itself, as it did

for 2-Coloring, and it is also a very difficult problem to reason about. For

example, one might initially suspect that any graph that is not 3-colorable will

contain a “proof” in the form of four nodes that are all mutually adjacent

(and hence would need four different colors)—but this is not true. The graph

in Figure 8.10, for instance, is not 3-colorable for a somewhat more subtle

(though still explainable) reason, and it is possible to draw much more

complicated graphs that are not 3-colorable for reasons that seem very hard to

state succinctly.

In fact, the case of three colors is already a very hard problem, as we show

now.

Proving 3-Coloring Is NP-Complete

(8.22) 3-Coloring is NP-complete.

Proof. It is easy to see why the problem is in NP. Given G and k, one certificate

that the answer is yes is simply a k-coloring: One can verify in polynomial time

that at most k colors are used, and that no pair of nodes joined by an edge

receive the same color.

Like the other problems in this section, 3-Coloring is a problem that is hard

to relate at a superficial level to other NP-complete problems we’ve seen. So

once again, we’re going to reach all the way back to 3-SAT. Given an arbitrary

instance of 3-SAT, with variables x1, . . . , xn and clauses C1, . . . , Ck, we will

solve it using a black box for 3-Coloring.

The beginning of the reduction is quite intuitive. Perhaps the main power

of 3-Coloring for encoding Boolean expressions lies in the fact that we can

associate graph nodes with particular terms, and by joining them with edges

we ensure that they get different colors; this can be used to set one true and

the other false. So with this in mind, we define nodes vi and vi corresponding

to each variable xi and its negation xi. We also define three “special nodes”

T, F , and B, which we refer to as True, False, and Base.

To begin, we join each pair of nodes vi, vi to each other by an edge, and

we join both these nodes to Base. (This forms a triangle on vi, vi, and Base,

for each i.) We also join True, False, and Base into a triangle. The simple graph

488 Chapter 8 NP and Computational Intractability

v3

False

v1

True

v2

v3v1

v2

BaseB

FT

– –

–

Figure 8.11 The beginning of the reduction for 3-Coloring.

G we have defined thus far is pictured in Figure 8.11, and it already has some

useful properties.

. In any 3-coloring of G, the nodes vi and vi must get different colors, and

both must be different from Base.

. In any 3-coloring of G, the nodes True, False, and Base must get all three

colors in some permutation. Thus we can refer to the three colors as the

True color, the False color, and the Base color, based on which of these

three nodes gets which color. In particular, this means that for each i,

one of vi or vi gets the True color, and the other gets the False color. For

the remainder of the construction, we will consider the variable xi to

be set to 1 in the given instance of 3-SAT if and only if the node vi gets

assigned the True color.

So in summary, we now have a graph G in which any 3-coloring implicitly

determines a truth assignment for the variables in the 3-SAT instance. We

now need to grow G so that only satisfying assignments can be extended to

3-colorings of the full graph. How should we do this?

As in other 3-SAT reductions, let’s consider a clause like x1 ∨ x2 ∨ x3. In

the language of 3-colorings of G, it says, “At least one of the nodes v1, v2, or

v3 should get the True color.” So what we need is a little subgraph that we can

plug into G, so that any 3-coloring that extends into this subgraph must have

the property of assigning the True color to at least one of v1, v2, or v3. It takes

some experimentation to find such a subgraph, but one that works is depicted

in Figure 8.12.

8.7 Graph Coloring 489

v3v1

v2

T F

–

The top node can only be

colored if one of v1, v2, or v3

does not get the False color.

–

Figure 8.12 Attaching a subgraph to represent the clause x1 ∨ x2 ∨ x3.

This six-node subgraph “attaches” to the rest of G at five existing nodes:

True, False, and those corresponding to the three terms in the clause that we’re

trying to represent (in this case, v1, v2, and v3.) Now suppose that in some 3-

coloring of G all three of v1, v2, and v3 are assigned the False color. Then the

lowest two shaded nodes in the subgraph must receive the Base color, the three

shaded nodes above them must receive, respectively, the False, Base, and True

colors, and hence there’s no color that can be assigned to the topmost shaded

node. In other words, a 3-coloring in which none of v1, v2, or v3 is assigned

the True color cannot be extended to a 3-coloring of this subgraph.2

Finally, and conversely, some hand-checking of cases shows that as long

as one of v1, v2, or v3 is assigned the True color, the full subgraph can be

3-colored.

So from this, we can complete the construction: We start with the graph G

defined above, and for each clause in the 3-SAT instance, we attach a six-node

subgraph as shown in Figure 8.12. Let us call the resulting graph G′.

2 This argument actually gives considerable insight into how one comes up with this subgraph in

the first place. The goal is to have a node like the topmost one that cannot receive any color. So we

start by “plugging in” three nodes corresponding to the terms, all colored False, at the bottom. For

each one, we then work upward, pairing it off with a node of a known color to force the node above

to have the third color. Proceeding in this way, we can arrive at a node that is forced to have any

color we want. So we force each of the three different colors, starting from each of the three different

terms, and then we plug all three of these differently colored nodes into our topmost node, arriving

at the impossibility.

490 Chapter 8 NP and Computational Intractability

We now claim that the given 3-SAT instance is satisfiable if and only if G′

has a 3-coloring. First, suppose that there is a satisfying assignment for the

3-SAT instance. We define a coloring of G′ by first coloring Base, True, and

False arbitrarily with the three colors, then, for each i, assigning vi the True

color if xi = 1 and the False color if xi = 0. We then assign vi the only available

color. Finally, as argued above, it is now possible to extend this 3-coloring into

each six-node clause subgraph, resulting in a 3-coloring of all of G′.

Conversely, suppose G′ has a 3-coloring. In this coloring, each node vi

is assigned either the True color or the False color; we set the variable xi

correspondingly. Now we claim that in each clause of the 3-SAT instance, at

least one of the terms in the clause has the truth value 1. For if not, then all

three of the corresponding nodes has the False color in the 3-coloring of G′

and, as we have seen above, there is no 3-coloring of the corresponding clause

subgraph consistent with this—a contradiction.

When k > 3, it is very easy to reduce the 3-Coloring Problem to k-Coloring.

Essentially, all we do is to take an instance of 3-Coloring, represented by a

graph G, add k − 3 new nodes, and join these new nodes to each other and to

every node in G. The resulting graph is k-colorable if and only if the original

graph G is 3-colorable. Thus k-Coloring for any k > 3 is NP-complete as well.

Coda: The Resolution of the Four-Color Conjecture

To conclude this section, we should finish off the story of the Four-Color

Conjecture for maps in the plane as well. After more than a hundred years,

the conjecture was finally proved by Appel and Haken in 1976. The structure

of the proof was a simple induction on the number of regions, but the

induction step involved nearly two thousand fairly complicated cases, and

the verification of these cases had to be carried out by a computer. This was

not a satisfying outcome for most mathematicians: Hoping for a proof that

would yield some insight into why the result was true, they instead got a case

analysis of enormous complexity whose proof could not be checked by hand.

The problem of finding a reasonably short, human-readable proof still remains

open.

8.8 Numerical Problems
We now consider some computationally hard problems that involve arithmetic

operations on numbers. We will see that the intractability here comes from the

way in which some of the problems we have seen earlier in the chapter can

be encoded in the representations of very large integers.

8.8 Numerical Problems 491

The Subset Sum Problem

Our basic problem in this genre will be Subset Sum, a special case of the

Knapsack Problem that we saw before in Section 6.4 when we covered dynamic

programming. We can formulate a decision version of this problem as follows.

Given natural numbers w1, . . . , wn, and a target number W, is there a

subset of {w1, . . . , wn} that adds up to precisely W?

We have already seen an algorithm to solve this problem; why are we now

including it on our list of computationally hard problems? This goes back to an

issue that we raised the first time we considered Subset Sum in Section 6.4. The

algorithm we developed there has running time O(nW), which is reasonable

when W is small, but becomes hopelessly impractical as W (and the numbers

wi) grow large. Consider, for example, an instance with 100 numbers, each of

which is 100 bits long. Then the input is only 100 × 100 = 10,000 digits, but

W is now roughly 2100.

To phrase this more generally, since integers will typically be given in bit

representation, or base-10 representation, the quantity W is really exponential

in the size of the input; our algorithm was not a polynomial-time algorithm.

(We referred to it as pseudo-polynomial, to indicate that it ran in time polyno-

mial in the magnitude of the input numbers, but not polynomial in the size of

their representation.)

This is an issue that comes up in many settings; for example, we encoun-

tered it in the context of network flow algorithms, where the capacities had

integer values. Other settings may be familiar to you as well. For example, the

security of a cryptosystem such as RSA is motivated by the sense that factoring

a 1,000-bit number is difficult. But if we considered a running time of 21000

steps feasible, factoring such a number would not be difficult at all.

It is worth pausing here for a moment and asking: Is this notion of

polynomial time for numerical operations too severe a restriction? For example,

given two natural numbers w1 and w2 represented in base-d notation for some

d > 1, how long does it take to add, subtract, or multiply them? This is an

issue we touched on in Section 5.5, where we noted that the standard ways

that kids in elementary school learn to perform these operations have (low-

degree) polynomial running times. Addition and subtraction (with carries) take

O(log w1 + log w2) time, while the standard multiplication algorithm runs in

O(log w1 · log w2) time. (Recall that in Section 5.5 we discussed the design of an

asymptotically faster multiplication algorithm that elementary schoolchildren

are unlikely to invent on their own.)

So a basic question is: Can Subset Sum be solved by a (genuinely)

polynomial-time algorithm? In other words, could there be an algorithm with

running time polynomial in n and log W? Or polynomial in n alone?

492 Chapter 8 NP and Computational Intractability

Proving Subset Sum Is NP-Complete

The following result suggests that this is not likely to be the case.

(8.23) Subset Sum is NP-complete.

Proof. We first show that Subset Sum is in NP. Given natural numbers

w1, . . . , wn, and a target W, a certificate that there is a solution would be

the subset wi1
, . . . , wik

that is purported to add up to W. In polynomial time,

we can compute the sum of these numbers and verify that it is equal to W.

We now reduce a known NP-complete problem to Subset Sum. Since we

are seeking a set that adds up to exactly a given quantity (as opposed to being

bounded above or below by this quantity), we look for a combinatorial problem

that is based on meeting an exact bound. The 3-Dimensional Matching Problem

is a natural choice; we show that 3-Dimensional Matching ≤P Subset Sum. The

trick will be to encode the manipulation of sets via the addition of integers.

So consider an instance of 3-Dimensional Matching specified by sets

X , Y , Z, each of size n, and a set of m triples T ⊆ X × Y × Z. A common

way to represent sets is via bit-vectors: Each entry in the vector corresponds to

a different element, and it holds a 1 if and only if the set contains that element.

We adopt this type of approach for representing each triple t = (xi, yj , zk) ∈ T:

we construct a number wt with 3n digits that has a 1 in positions i, n + j, and

2n + k, and a 0 in all other positions. In other words, for some base d > 1,

wt = di−1 + dn+j−1 + d2n+k−1.

Note how taking the union of triples almost corresponds to integer ad-

dition: The 1s fill in the places where there is an element in any of the sets.

But we say almost because addition includes carries: too many 1s in the same

column will “roll over” and produce a nonzero entry in the next column. This

has no analogue in the context of the union operation.

In the present situation, we handle this problem by a simple trick. We have

only m numbers in all, and each has digits equal to 0 or 1; so if we assume

that our numbers are written in base d = m + 1, then there will be no carries

at all.

Thus we construct the following instance of Subset Sum. For each triple

t = (xi, yj , zk) ∈ T, we construct a number wt in base m + 1 as defined above.

We define W to be the number in base m + 1 with 3n digits, each of which is

equal to 1, that is, W =
∑3n−1

i=0 (m + 1)i.

We claim that the set T of triples contains a perfect three-dimensional

matching if and only if there is a subset of the numbers {wt} that adds up to

W. For suppose there is a perfect three-dimensional matching consisting of

8.8 Numerical Problems 493

triples t1, . . . , tn. Then in the sum wt1
+ . . . + wtn

, there is a single 1 in each

of the 3n digit positions, and so the result is equal to W.

Conversely, suppose there exists a set of numbers wt1
, . . . , wtk

that adds

up to W. Then since each wti
has three 1s in its representation, and there are no

carries, we know that k = n. It follows that for each of the 3n digit positions,

exactly one of the wti
has a 1 in that position. Thus, t1, . . . , tk constitute a

perfect three-dimensional matching.

Extensions: The Hardness of Certain Scheduling Problems

The hardness of Subset Sum can be used to establish the hardness of a range

of scheduling problems—including some that do not obviously involve the

addition of numbers. Here is a nice example, a natural (but much harder)

generalization of a scheduling problem we solved in Section 4.2 using a greedy

algorithm.

Suppose we are given a set of n jobs that must be run on a single machine.

Each job i has a release time ri when it is first available for processing; a

deadline di by which it must be completed; and a processing duration ti. We

will assume that all of these parameters are natural numbers. In order to be

completed, job i must be allocated a contiguous slot of ti time units somewhere

in the interval [ri, di]. The machine can run only one job at a time. The question

is: Can we schedule all jobs so that each completes by its deadline? We will

call this an instance of Scheduling with Release Times and Deadlines.

(8.24) Scheduling with Release Times and Deadlines is NP-complete.

Proof. Given an instance of the problem, a certificate that it is solvable would

be a specification of the starting time for each job. We could then check that

each job runs for a distinct interval of time, between its release time and

deadline. Thus the problem is in NP.

We now show that Subset Sum is reducible to this scheduling problem.

Thus, consider an instance of Subset Sum with numbers w1, . . . , wn and a

target W. In constructing an equivalent scheduling instance, one is struck

initially by the fact that we have so many parameters to manage: release

times, deadlines, and durations. The key is to sacrifice most of this flexibility,

producing a “skeletal” instance of the problem that still encodes the Subset

Sum Problem.

Let S =
∑n

i=1 wi. We define jobs 1, 2, . . . , n; job i has a release time of

0, a deadline of S + 1, and a duration of wi. For this set of jobs, we have the

freedom to arrange them in any order, and they will all finish on time.

494 Chapter 8 NP and Computational Intractability

We now further constrain the instance so that the only way to solve it will

be to group together a subset of the jobs whose durations add up precisely to

W. To do this, we define an (n + 1)st job; it has a release time of W, a deadline

of W + 1, and a duration of 1.

Now consider any feasible solution to this instance of the scheduling

problem. The (n + 1)st job must be run in the interval [W , W + 1]. This leaves

S available time units between the common release time and the common

deadline; and there are S time units worth of jobs to run. Thus the machine

must not have any idle time, when no jobs are running. In particular, if jobs

i1, . . . , ik are the ones that run before time W, then the corresponding numbers

wi1
, . . . , wik

in the Subset Sum instance add up to exactly W.

Conversely, if there are numbers wi1
, . . . , wik

that add up to exactly W,

then we can schedule these before job n + 1 and the remainder after job n + 1;

this is a feasible solution to the scheduling instance.

Caveat: Subset Sum with Polynomially Bounded Numbers

There is a very common source of pitfalls involving the Subset Sum Problem,

and while it is closely connected to the issues we have been discussing already,

we feel it is worth discussing explicitly. The pitfall is the following.

Consider the special case of Subset Sum, with n input numbers, in which W

is bounded by a polynomial function of n. Assuming P �= NP, this special

case is not NP-complete.

It is not NP-complete for the simple reason that it can be solved in time O(nW),

by our dynamic programming algorithm from Section 6.4; when W is bounded

by a polynomial function of n, this is a polynomial-time algorithm.

All this is very clear; so you may ask: Why dwell on it? The reason is that

there is a genre of problem that is often wrongly claimed to be NP-complete

(even in published papers) via reduction from this special case of Subset Sum.

Here is a basic example of such a problem, which we will call Component

Grouping.

Given a graph G that is not connected, and a number k, does there exist a

subset of its connected components whose union has size exactly k?

Incorrect Claim. Component Grouping is NP-complete.

Incorrect Proof. Component Grouping is in NP, and we’ll skip the proof

of this. We now attempt to show that Subset Sum ≤P Component Grouping.

Given an instance of Subset Sum with numbers w1, . . . , wn and target W,

we construct an instance of Component Grouping as follows. For each i, we

construct a path Pi of length wi. The graph G will be the union of the paths

8.9 Co-NP and the Asymmetry of NP 495

P1, . . . , Pn, each of which is a separate connected component. We set k = W.

It is clear that G has a set of connected components whose union has size k if

and only if some subset of the numbers w1, . . . , wn adds up to W.

The error here is subtle; in particular, the claim in the last sentence

is correct. The problem is that the construction described above does not

establish that Subset Sum ≤P Component Grouping, because it requires more

than polynomial time. In constructing the input to our black box that solves

Component Grouping, we had to build the encoding of a graph of size w1 +
. . . + wn, and this takes time exponential in the size of the input to the Subset

Sum instance. In effect, Subset Sum works with the numbers w1, . . . , wn

in a very compact representation, but Component Grouping does not accept

“compact” encodings of graphs.

The problem is more fundamental than the incorrectness of this proof; in

fact, Component Grouping is a problem that can be solved in polynomial time.

If n1, n2, . . . , nc denote the sizes of the connected components of G, we simply

use our dynamic programming algorithm for Subset Sum to decide whether

some subset of these numbers {ni} adds up to k. The running time required

for this is O(ck); and since c and k are both bounded by n, this is O(n2) time.

Thus we have discovered a new polynomial-time algorithm by reducing in

the other direction, to a polynomial-time solvable special case of Subset Sum.

8.9 Co-NP and the Asymmetry of NP
As a further perspective on this general class of problems, let’s return to the

definitions underlying the class NP. We’ve seen that the notion of an efficient

certifier doesn’t suggest a concrete algorithm for actually solving the problem

that’s better than brute-force search.

Now here’s another observation: The definition of efficient certification,

and hence of NP, is fundamentally asymmetric. An input string s is a “yes”

instance if and only if there exists a short t so that B(s, t) = yes. Negating this

statement, we see that an input string s is a “no” instance if and only if for all

short t, it’s the case that B(s, t) = no.

This relates closely to our intuition about NP: When we have a “yes”

instance, we can provide a short proof of this fact. But when we have a “no”

instance, no correspondingly short proof is guaranteed by the definition; the

answer is no simply because there is no string that will serve as a proof. In

concrete terms, recall our question from Section 8.3: Given an unsatisfiable set

of clauses, what evidence could we show to quickly convince you that there

is no satisfying assignment?

496 Chapter 8 NP and Computational Intractability

For every problem X, there is a natural complementary problem X: For all

input strings s, we say s ∈ X if and only if s �∈ X. Note that if X ∈ P, then X ∈ P,

since from an algorithm A that solves X, we can simply produce an algorithm

A that runs A and then flips its answer.

But it is far from clear that if X ∈ NP, it should follow that X ∈ NP. The

problem X, rather, has a different property: for all s, we have s ∈ X if and only

if for all t of length at most p(|s|), B(s, t) = no. This is a fundamentally different

definition, and it can’t be worked around by simply “inverting” the output of

the efficient certifier B to produce B. The problem is that the “exists t” in the

definition of NP has become a “for all t,” and this is a serious change.

There is a class of problems parallel to NP that is designed to model this

issue; it is called, naturally enough, co-NP. A problem X belongs to co-NP if

and only if the complementary problem X belongs to NP. We do not know for

sure that NP and co-NP are different; we can only ask

(8.25) Does NP = co-NP?

Again, the widespread belief is that NP �= co-NP: Just because the “yes”

instances of a problem have short proofs, it is not clear why we should believe

that the “no” instances have short proofs as well.

Proving NP �= co-NP would be an even bigger step than proving P �= NP,

for the following reason:

(8.26) If NP �= co-NP, then P �= NP.

Proof. We’ll actually prove the contrapositive statement: P = NP implies

NP = co-NP. Essentially, the point is that P is closed under complementation;

so if P = NP, then NP would be closed under complementation as well. More

formally, starting from the assumption P = NP, we have

X ∈ NP �⇒ X ∈ P �⇒ X ∈ P �⇒ X ∈ NP �⇒ X ∈ co-NP

and

X ∈ co-NP �⇒ X ∈ NP �⇒ X ∈ P �⇒ X ∈ P �⇒ X ∈ NP.

Hence it would follow that NP ⊆ co-NP and co-NP ⊆ NP, whence NP =

co-NP.

Good Characterizations: The Class NP ∩ co-NP

If a problem X belongs to both NP and co-NP, then it has the following nice

property: When the answer is yes, there is a short proof; and when the answer

is no, there is also a short proof. Thus problems that belong to this intersection

8.10 A Partial Taxonomy of Hard Problems 497

NP ∩ co-NP are said to have a good characterization, since there is always a

nice certificate for the solution.

This notion corresponds directly to some of the results we have seen earlier.

For example, consider the problem of determining whether a flow network

contains a flow of value at least ν, for some quantity ν. To prove that the

answer is yes, we could simply exhibit a flow that achieves this value; this

is consistent with the problem belonging to NP. But we can also prove the

answer is no: We can exhibit a cut whose capacity is strictly less than ν. This

duality between “yes” and “no” instances is the crux of the Max-Flow Min-Cut

Theorem.

Similarly, Hall’s Theorem for matchings from Section 7.5 proved that the

Bipartite Perfect Matching Problem is in NP ∩ co-NP: We can exhibit either

a perfect matching, or a set of vertices A ⊆ X such that the total number of

neighbors of A is strictly less than |A|.

Now, if a problem X is in P, then it belongs to both NP and co-NP;

thus, P ⊆ NP ∩ co-NP. Interestingly, both our proof of the Max-Flow Min-Cut

Theorem and our proof of Hall’s Theorem came hand in hand with proofs of

the stronger results that Maximum Flow and Bipartite Matching are problems

in P. Nevertheless, the good characterizations themselves are so clean that

formulating them separately still gives us a lot of conceptual leverage in

reasoning about these problems.

Naturally, one would like to know whether there’s a problem that has a

good characterization but no polynomial-time algorithm. But this too is an

open question:

(8.27) Does P = NP ∩ co-NP?

Unlike questions (8.11) and (8.25), general opinion seems somewhat

mixed on this one. In part, this is because there are many cases in which

a problem was found to have a nontrivial good characterization; and then

(sometimes many years later) it was also discovered to have a polynomial-

time algorithm.

8.10 A Partial Taxonomy of Hard Problems
We’ve now reached the end of the chapter, and we’ve encountered a fairly rich

array of NP-complete problems. In a way, it’s useful to know a good number

of different NP-complete problems: When you encounter a new problem X

and want to try proving it’s NP-complete, you want to show Y ≤P X for some

known NP-complete problem Y—so the more options you have for Y, the

better.

498 Chapter 8 NP and Computational Intractability

At the same time, the more options you have for Y, the more bewildering it

can be to try choosing the right one to use in a particular reduction. Of course,

the whole point of NP-completeness is that one of these problems will work in

your reduction if and only if any of them will (since they’re all equivalent with

respect to polynomial-time reductions); but the reduction to a given problem

X can be much, much easier starting from some problems than from others.

With this in mind, we spend this concluding section on a review of the NP-

complete problems we’ve come across in the chapter, grouped into six basic

genres. Together with this grouping, we offer some suggestions as to how to

choose a starting problem for use in a reduction.

Packing Problems

Packing problems tend to have the following structure: You’re given a collection

of objects, and you want to choose at least k of them; making your life difficult

is a set of conflicts among the objects, preventing you from choosing certain

groups simultaneously.

We’ve seen two basic packing problems in this chapter.

. Independent Set: Given a graph G and a number k, does G contain an

independent set of size at least k?

. Set Packing: Given a set U of n elements, a collection S1, . . . , Sm of

subsets of U, and a number k, does there exist a collection of at least k

of these sets with the property that no two of them intersect?

Covering Problems

Covering problems form a natural contrast to packing problems, and one

typically recognizes them as having the following structure: you’re given a

collection of objects, and you want to choose a subset that collectively achieves

a certain goal; the challenge is to achieve this goal while choosing only k of

the objects.

We’ve seen two basic covering problems in this chapter.

. Vertex Cover: Given a graph G and a number k, does G contain a vertex

cover of size at most k?

. Set Cover: Given a set U of n elements, a collection S1, . . . , Sm of subsets

of U, and a number k, does there exist a collection of at most k of these

sets whose union is equal to all of U?

Partitioning Problems

Partitioning problems involve a search over all ways to divide up a collection

of objects into subsets so that each object appears in exactly one of the subsets.

8.10 A Partial Taxonomy of Hard Problems 499

One of our two basic partitioning problems, 3-Dimensional Matching,

arises naturally whenever you have a collection of sets and you want to solve a

covering problem and a packing problem simultaneously: Choose some of the

sets in such a way that they are disjoint, yet completely cover the ground set.

. 3-Dimensional Matching: Given disjoint sets X, Y, and Z, each of size n,

and given a set T ⊆ X × Y × Z of ordered triples, does there exist a set of

n triples in T so that each element of X ∪ Y ∪ Z is contained in exactly

one of these triples?

Our other basic partitioning problem, Graph Coloring, is at work whenever

you’re seeking to partition objects in the presence of conflicts, and conflicting

objects aren’t allowed to go into the same set.

. Graph Coloring: Given a graph G and a bound k, does G have a k-coloring?

Sequencing Problems

Our first three types of problems have involved searching over subsets of a

collection of objects. Another type of computationally hard problem involves

searching over the set of all permutations of a collection of objects.

Two of our basic sequencing problems draw their difficulty from the fact

that you are required to order n objects, but there are restrictions preventing

you from placing certain objects after certain others.

. Hamiltonian Cycle: Given a directed graph G, does it contain a Hamilto-

nian cycle?

. Hamiltonian Path: Given a directed graph G, does it contain a Hamilto-

nian path?

Our third basic sequencing problem is very similar; it softens these restric-

tions by simply imposing a cost for placing one object after another.

. Traveling Salesman: Given a set of distances on n cities, and a bound D,

is there a tour of length at most D?

Numerical Problems

The hardness of the numerical problems considered in this chapter flowed

principally from Subset Sum, the special case of the Knapsack Problem that

we considered in Section 8.8.

. Subset Sum: Given natural numbers w1, . . . , wn, and a target number W,

is there a subset of {w1, . . . , wn} that adds up to precisely W?

It is natural to try reducing from Subset Sum whenever one has a problem with

weighted objects and the goal is to select objects conditioned on a constraint on

500 Chapter 8 NP and Computational Intractability

the total weight of the objects selected. This, for example, is what happened in

the proof of (8.24), showing that Scheduling with Release Times and Deadlines

is NP-complete.

At the same time, one must heed the warning that Subset Sum only

becomes hard with truly large integers; when the magnitudes of the input

numbers are bounded by a polynomial function of n, the problem is solvable

in polynomial time by dynamic programming.

Constraint Satisfaction Problems

Finally, we considered basic constraint satisfaction problems, including Circuit

Satisfiability, SAT, and 3-SAT. Among these, the most useful for the purpose of

designing reductions is 3-SAT.

. 3-SAT: Given a set of clauses C1, . . . , Ck, each of length 3, over a set of

variables X = {x1, . . . , xn}, does there exist a satisfying truth assignment?

Because of its expressive flexibility, 3-SAT is often a useful starting point for

reductions where none of the previous five categories seem to fit naturally onto

the problem being considered. In designing 3-SAT reductions, it helps to recall

the advice given in the proof of (8.8), that there are two distinct ways to view

an instance of 3-SAT: (a) as a search over assignments to the variables, subject

to the constraint that all clauses must be satisfied, and (b) as a search over

ways to choose a single term (to be satisfied) from each clause, subject to the

constraint that one mustn’t choose conflicting terms from different clauses.

Each of these perspectives on 3-SAT is useful, and each forms the key idea

behind a large number of reductions.

Solved Exercises

Solved Exercise 1

You’re consulting for a small high-tech company that maintains a high-security

computer system for some sensitive work that it’s doing. To make sure this

system is not being used for any illicit purposes, they’ve set up some logging

software that records the IP addresses that all their users are accessing over

time. We’ll assume that each user accesses at most one IP address in any given

minute; the software writes a log file that records, for each user u and each

minute m, a value I(u, m) that is equal to the IP address (if any) accessed by

user u during minute m. It sets I(u, m) to the null symbol ⊥ if u did not access

any IP address during minute m.

The company management just learned that yesterday the system was

used to launch a complex attack on some remote sites. The attack was carried

out by accessing t distinct IP addresses over t consecutive minutes: In minute

Solved Exercises 501

1, the attack accessed address i1; in minute 2, it accessed address i2; and so

on, up to address it in minute t.

Who could have been responsible for carrying out this attack? The com-

pany checks the logs and finds to its surprise that there’s no single user u who

accessed each of the IP addresses involved at the appropriate time; in other

words, there’s no u so that I(u, m) = im for each minute m from 1 to t.

So the question becomes: What if there were a small coalition of k users

that collectively might have carried out the attack? We will say a subset S of

users is a suspicious coalition if, for each minute m from 1 to t, there is at least

one user u ∈ S for which I(u, m) = im. (In other words, each IP address was

accessed at the appropriate time by at least one user in the coalition.)

The Suspicious Coalition Problem asks: Given the collection of all values

I(u, m), and a number k, is there a suspicious coalition of size at most k?

Solution First of all, Suspicious Coalition is clearly in NP: If we were to be

shown a set S of users, we could check that S has size at most k, and that

for each minute m from 1 to t, at least one of the users in S accessed the IP

address im.

Now we want to find a known NP-complete problem and reduce it to

Suspicious Coalition. Although Suspicious Coalition has lots of features (users,

minutes, IP addresses), it’s very clearly a covering problem (following the

taxonomy described in the chapter): We need to explain all t suspicious

accesses, and we’re allowed a limited number of users (k) with which to do

this. Once we’ve decided it’s a covering problem, it’s natural to try reducing

Vertex Cover or Set Cover to it. And in order to do this, it’s useful to push most

of its complicated features into the background, leaving just the bare-bones

features that will be used to encode Vertex Cover or Set Cover.

Let’s focus on reducing Vertex Cover to it. In Vertex Cover, we need to cover

every edge, and we’re only allowed k nodes. In Suspicious Coalition, we need

to “cover” all the accesses, and we’re only allowed k users. This parallelism

strongly suggests that, given an instance of Vertex Cover consisting of a graph

G = (V , E) and a bound k, we should construct an instance of Suspicious

Coalition in which the users represent the nodes of G and the suspicious

accesses represent the edges.

So suppose the graph G for the Vertex Cover instance has m edges

e1, . . . , em, and ej = (vj , wj). We construct an instance of Suspicious Coali-

tion as follows. For each node of G we construct a user, and for each edge

et = (vt , wt) we construct a minute t. (So there will be m minutes total.) In

minute t, the users associated with the two ends of et access an IP address it,

and all other users access nothing. Finally, the attack consists of accesses to

addresses i1, i2, . . . , im in minutes 1, 2, . . . , m, respectively.

502 Chapter 8 NP and Computational Intractability

The following claim will establish that Vertex Cover ≤P Suspicious Coali-

tion and hence will conclude the proof that Suspicious Coalition is NP-

complete. Given how closely our construction of the instance shadows the

original Vertex Cover instance, the proof is completely straightforward.

(8.28) In the instance constructed, there is a suspicious coalition of size at

most k if and only if the graph G contains a vertex cover of size at most k.

Proof. First, suppose that G contains a vertex cover C of size at most k.

Then consider the corresponding set S of users in the instance of Suspicious

Coalition. For each t from 1 to m, at least one element of C is an end of the

edge et, and the corresponding user in S accessed the IP address it. Hence the

set S is a suspicious coalition.

Conversely, suppose that there is a suspicious coalition S of size at most

k, and consider the corresponding set of nodes C in G. For each t from 1 to m,

at least one user in S accessed the IP address it, and the corresponding node

in C is an end of the edge et. Hence the set C is a vertex cover.

Solved Exercise 2

You’ve been asked to organize a freshman-level seminar that will meet once

a week during the next semester. The plan is to have the first portion of the

semester consist of a sequence of ℓ guest lectures by outside speakers, and

have the second portion of the semester devoted to a sequence of p hands-on

projects that the students will do.

There are n options for speakers overall, and in week number i (for

i = 1, 2, . . . , ℓ) a subset Li of these speakers is available to give a lecture.

On the other hand, each project requires that the students have seen certain

background material in order for them to be able to complete the project

successfully. In particular, for each project j (for j = 1, 2, . . . , p), there is a

subset Pj of relevant speakers so that the students need to have seen a lecture

by at least one of the speakers in the set Pj in order to be able to complete the

project.

So this is the problem: Given these sets, can you select exactly one speaker

for each of the first ℓ weeks of the seminar, so that you only choose speakers

who are available in their designated week, and so that for each project j, the

students will have seen at least one of the speakers in the relevant set Pj? We’ll

call this the Lecture Planning Problem.

To make this clear, let’s consider the following sample instance. Suppose

that ℓ = 2, p = 3, and there are n = 4 speakers that we denote A, B, C , D. The

availability of the speakers is given by the sets L1 = {A, B, C} and L2 = {A, D}.

The relevant speakers for each project are given by the sets P1 = {B, C},

Solved Exercises 503

P2 = {A, B, D}, and P3 = {C , D}. Then the answer to this instance of the problem

is yes, since we can choose speaker B in the first week and speaker D in the

second week; this way, for each of the three projects, students will have seen

at least one of the relevant speakers.

Prove that Lecture Planning is NP-complete.

Solution The problem is in NP since, given a sequence of speakers, we can

check (a) all speakers are available in the weeks when they’re scheduled,

and (b) that for each project, at least one of the relevant speakers has been

scheduled.

Now we need to find a known NP-complete problem that we can reduce to

Lecture Planning. This is less clear-cut than in the previous exercise, because

the statement of the Lecture Planning Problem doesn’t immediately map into

the taxonomy from the chapter.

There is a useful intuitive view of Lecture Planning, however, that is

characteristic of a wide range of constraint satisfaction problems. This intuition

is captured, in a strikingly picturesque way, by a description that appeared in

the New Yorker of the lawyer David Boies’s cross-examination style:

During a cross-examination, David takes a friendly walk down the hall

with you while he’s quietly closing doors. They get to the end of the hall

and David turns on you and there’s no place to go. He’s closed all the doors.3

What does constraint satisfaction have to do with cross-examination? In

Lecture Planning, as in many similar problems, there are two conceptual

phases. There’s a first phase in which you walk through a set of choices,

selecting some and thereby closing the door on others; this is followed by a

second phase in which you find out whether your choices have left you with

a valid solution or not.

In the case of Lecture Planning, the first phase consists of choosing a

speaker for each week, and the second phase consists of verifying that you’ve

picked a relevant speaker for each project. But there are many NP-complete

problems that fit this description at a high level, and so viewing Lecture

Planning this way helps us search for a plausible reduction. We will in fact

describe two reductions, first from 3-SAT and then from Vertex Cover. Of

course, either one of these by itself is enough to prove NP-completeness, but

both make for useful examples.

3-SAT is the canonical example of a problem with the two-phase structure

described above: We first walk through the variables, setting each one to

true or false; we then look over each clause and see whether our choices

3 Ken Auletta quoting Jeffrey Blattner, The New Yorker , 16 August 1999.

504 Chapter 8 NP and Computational Intractability

have satisfied it. This parallel to Lecture Planning already suggests a natural

reduction showing that 3-SAT ≤P Lecture Planning: We set things up so that

the choice of lecturers sets the variables, and then the feasibility of the projects

represents the satisfaction of the clauses.

More concretely, suppose we are given an instance of 3-SAT consisting of

clauses C1, . . . , Ck over the variables x1, x2, . . . , xn. We construct an instance

of Lecture Planning as follows. For each variable xi, we create two lecturers

zi and z′
i that will correspond to xi and its negation. We begin with n weeks

of lectures; in week i, the only two lecturers available are zi and z′
i. Then

there is a sequence of k projects; for project j, the set of relevant lecturers Pj

consists of the three lecturers corresponding to the terms in clause Cj. Now,

if there is a satisfying assignment ν for the 3-SAT instance, then in week i we

choose the lecturer among zi, z′
i that corresponds to the value assigned to xi

by ν; in this case, we will select at least one speaker from each relevant set Pj.

Conversely, if we find a way to choose speakers so that there is at least one

from each relevant set, then we can set the variables xi as follows: xi is set

to 1 if zi is chosen, and it is set to 0 if z′
i is chosen. In this way, at least one

of the three variables in each clause Cj is set in a way that satisfies it, and so

this is a satisfying assignment. This concludes the reduction and its proof of

correctness.

Our intuitive view of Lecture Planning leads naturally to a reduction from

Vertex Cover as well. (What we describe here could be easily modified to work

from Set Cover or 3-Dimensional Matching too.) The point is that we can view

Vertex Cover as having a similar two-phase structure: We first choose a set

of k nodes from the input graph, and we then verify for each edge that these

choices have covered all the edges.

Given an input to Vertex Cover, consisting of a graph G = (V , E) and a

number k, we create a lecturer zv for each node v. We set ℓ = k, and define

L1 = L2 = . . . = Lk = {zv : v ∈ V}. In other words, for the first k weeks, all

lecturers are available. After this, we create a project j for each edge ej = (v, w),

with set Pj = {zv, zw}.

Now, if there is a vertex cover S of at most k nodes, then consider the

set of lecturers ZS = {zv : v ∈ S}. For each project Pj, at least one of the relevant

speakers belongs to ZS, since S covers all edges in G. Moreover, we can schedule

all the lecturers in ZS during the first k weeks. Thus it follows that there is a

feasible solution to the instance of Lecture Planning.

Conversely, suppose there is a feasible solution to the instance of Lecture

Planning, and let T be the set of all lecturers who speak in the first k weeks.

Let X be the set of nodes in G that correspond to lecturers in T. For each project

Pj, at least one of the two relevant speakers appears in T, and hence at least

Exercises 505

one end of each edge ej is in the set X. Thus X is a vertex cover with at most

k nodes.

This concludes the proof that Vertex Cover ≤P Lecture Planning.

Exercises

1. For each of the two questions below, decide whether the answer is

(i) “Yes,” (ii) “No,” or (iii) “Unknown, because it would resolve the question

of whether P = NP.” Give a brief explanation of your answer.

(a) Let’s define the decision version of the Interval Scheduling Prob-

lem from Chapter 4 as follows: Given a collection of intervals on

a time-line, and a bound k, does the collection contain a subset of

nonoverlapping intervals of size at least k?

Question: Is it the case that Interval Scheduling ≤P Vertex Cover?

(b) Question: Is it the case that Independent Set ≤P Interval Scheduling?

2. A store trying to analyze the behavior of its customers will oftenmaintain

a two-dimensional array A, where the rows correspond to its customers

and the columns correspond to the products it sells. The entry A[i, j]

specifies the quantity of product j that has been purchased by customer i.

Here’s a tiny example of such an array A.

liquid detergent beer diapers cat litter

Raj 0 6 0 3

Alanis 2 3 0 0

Chelsea 0 0 0 7

One thing that a storemight want to dowith this data is the following.

Let us say that a subset S of the customers is diverse if no two of the

of the customers in S have ever bought the same product (i.e., for each

product, at most one of the customers in S has ever bought it). A diverse

set of customers can be useful, for example, as a target pool for market

research.

We can now define the Diverse Subset Problem as follows: Given an

m × n array A as defined above, and a number k ≤ m, is there a subset of

at least k of customers that is diverse?

Show that Diverse Subset is NP-complete.

3. Suppose you’re helping to organize a summer sports camp, and the

following problem comes up. The camp is supposed to have at least

506 Chapter 8 NP and Computational Intractability

one counselor who’s skilled at each of the n sports covered by the camp

(baseball, volleyball, and so on). They have received job applications from

m potential counselors. For each of the n sports, there is some subset

of the m applicants qualified in that sport. The question is: For a given

number k < m, is it possible to hire at most k of the counselors and have

at least one counselor qualified in each of the n sports? We’ll call this the

Efficient Recruiting Problem.

Show that Efficient Recruiting is NP-complete.

4. Suppose you’re consulting for a group that manages a high-performance

real-time system in which asynchronous processes make use of shared

resources. Thus the system has a set of n processes and a set of m

resources. At any given point in time, each process specifies a set of

resources that it requests to use. Each resource might be requested by

many processes at once; but it can only be used by a single process at

a time. Your job is to allocate resources to processes that request them.

If a process is allocated all the resources it requests, then it is active;

otherwise it is blocked . Youwant to perform the allocation so that asmany

processes as possible are active. Thus we phrase theResource Reservation

Problem as follows: Given a set of processes and resources, the set of

requested resources for each process, and a number k, is it possible to

allocate resources to processes so that at least k processes will be active?

Consider the following list of problems, and for each problem ei-

ther give a polynomial-time algorithm or prove that the problem is NP-

complete.

(a) The general Resource Reservation Problem defined above.

(b) The special case of the problem when k = 2.

(c) The special case of the problem when there are two types of re-

sources—say, people and equipment—and each process requires

at most one resource of each type (In other words, each process

requires one specific person and one specific piece of equipment.)

(d) The special case of the problem when each resource is requested by

at most two processes.

5. Consider a set A = {a1, . . . , an} and a collection B1, B2, . . . , Bm of subsets of

A (i.e., Bi ⊆ A for each i).

We say that a set H ⊆ A is a hitting set for the collection B1, B2, . . . , Bm

if H contains at least one element from each Bi—that is, if H ∩ Bi is not

empty for each i (so H “hits” all the sets Bi).

We now define the Hitting Set Problem as follows. We are given a set

A = {a1, . . . , an}, a collection B1, B2, . . . , Bm of subsets of A, and a number

Exercises 507

k. We are asked: Is there a hitting set H ⊆ A for B1, B2, . . . , Bm so that the

size of H is at most k?

Prove that Hitting Set is NP-complete.

6. Consider an instance of the Satisfiability Problem, specified by clauses

C1, . . . , Ck over a set of Boolean variables x1, . . . , xn. We say that the

instance ismonotone if each term in each clause consists of a nonnegated

variable; that is, each term is equal to xi, for some i, rather than xi.

Monotone instances of Satisfiability are very easy to solve: They are

always satisfiable, by setting each variable equal to 1.

For example, suppose we have the three clauses

(x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3).

This is monotone, and indeed the assignment that sets all three variables

to 1 satisfies all the clauses. But we can observe that this is not the only

satisfying assignment; we could also have set x1 and x2 to 1, and x3 to 0.

Indeed, for any monotone instance, it is natural to ask how few variables

we need to set to 1 in order to satisfy it.

Given a monotone instance of Satisfiability, together with a number

k, the problem of Monotone Satisfiability with Few True Variables asks: Is

there a satisfying assignment for the instance in which atmost k variables

are set to 1? Prove this problem is NP-complete.

7. Since the 3-Dimensional Matching Problem is NP-complete, it is natural

to expect that the corresponding 4-Dimensional Matching Problem is at

least as hard. Let us define 4-Dimensional Matching as follows. Given sets

W, X, Y, and Z, each of size n, and a collection C of ordered 4-tuples of the

form (wi, xj , yk , zℓ), do there exist n 4-tuples from C so that no two have

an element in common?

Prove that 4-Dimensional Matching is NP-complete.

8. Your friends’ preschool-age daughter Madison has recently learned to

spell some simple words. To help encourage this, her parents got her a

colorful set of refrigerator magnets featuring the letters of the alphabet

(some number of copies of the letter A, some number of copies of the

letter B, and so on), and the last time you saw her the two of you spent a

while arranging the magnets to spell out words that she knows.

Somehow with you and Madison, things always end up getting more

elaborate than originally planned, and soon the two of you were trying

to spell out words so as to use up all the magnets in the full set—that

is, picking words that she knows how to spell, so that once they were all

spelled out, each magnet was participating in the spelling of exactly one

508 Chapter 8 NP and Computational Intractability

of the words. (Multiple copies of words are okay here; so for example, if

the set of refrigerator magnets includes two copies each of C, A, and T ,

it would be okay to spell out CAT twice.)

This turned out to be pretty difficult, and it was only later that you

realized a plausible reason for this. Supposewe consider a general version

of the problem ofUsing UpAll the Refrigerator Magnets, where we replace

the English alphabet by an arbitrary collection of symbols, and we model

Madison’s vocabulary as an arbitrary set of strings over this collection of

symbols. The goal is the same as in the previous paragraph.

Prove that the problem of Using Up All the Refrigerator Magnets is

NP-complete.

9. Consider the following problem. You are managing a communication

network, modeled by a directed graph G = (V , E). There are c users who

are interested inmaking use of this network. User i (for each i = 1, 2, . . . , c)

issues a request to reserve a specific path Pi in G on which to transmit

data.

You are interested in accepting as many of these path requests as

possible, subject to the following restriction: if you accept both Pi and Pj,

then Pi and Pj cannot share any nodes.

Thus, the Path Selection Problem asks: Given a directed graph G =

(V , E), a set of requests P1, P2, . . . , Pc—each of which must be a path in

G—and a number k, is it possible to select at least k of the paths so that

no two of the selected paths share any nodes?

Prove that Path Selection is NP-complete.

10. Your friends at WebExodus have recently been doing some consulting

work for companies that maintain large, publicly accessible Web sites—

contractual issues prevent them from saying which ones—and they’ve

come across the following Strategic Advertising Problem.

A company comes to them with the map of a Web site, which we’ll

model as a directed graph G = (V , E). The company also provides a set of

t trails typically followed by users of the site; we’ll model these trails as

directed paths P1, P2, . . . , Pt in the graph G (i.e., each Pi is a path in G).

The company wants WebExodus to answer the following question

for them: Given G, the paths {Pi}, and a number k, is it possible to place

advertisements on at most k of the nodes in G, so that each path Pi

includes at least one node containing an advertisement? We’ll call this

the Strategic Advertising Problem, with input G, {Pi : i = 1, . . . , t}, and k.

Your friends figure that a good algorithm for this will make them all

rich; unfortunately, things are never quite this simple.

Exercises 509

(a) Prove that Strategic Advertising is NP-complete.

(b) Your friends at WebExodus forge ahead and write a pretty fast algo-

rithm S that produces yes/no answers to arbitrary instances of the

Strategic Advertising Problem. You may assume that the algorithm

S is always correct.

Using the algorithm S as a black box, design an algorithm that

takes input G, {Pi}, and k as in part (a), and does one of the following

two things:

– Outputs a set of atmost k nodes in G so that each path Pi includes

at least one of these nodes, or

– Outputs (correctly) that no such set of at most k nodes exists.

Your algorithm should use at most a polynomial number of steps, to-

gether with at most a polynomial number of calls to the algorithm S.

11. As some people remember, and many have been told, the idea of hyper-

text predates the World Wide Web by decades. Even hypertext fiction is

a relatively old idea: Rather than being constrained by the linearity of

the printed page, you can plot a story that consists of a collection of

interlocked virtual “places” joined by virtual “passages.”4 So a piece of

hypertext fiction is really riding on an underlying directed graph; to be

concrete (though narrowing the full range of what the domain can do),

we’ll model this as follows.

Let’s view the structure of a piece of hypertext fiction as a directed

graph G = (V , E). Each node u ∈ V contains some text; when the reader is

currently at u, he or she can choose to follow any edge out of u; and if the

reader chooses e = (u, v), he or she arrives next at the node v. There is a

start node s ∈ V where the reader begins, and an end node t ∈ V; when the

reader first reaches t, the story ends. Thus any path from s to t is a valid

plot of the story. Note that, unlike one’s experience using a Web browser,

there is not necessarily a way to go back; once you’ve gone from u to v,

you might not be able to ever return to u.

In this way, the hypertext structure defines a huge number of differ-

ent plots on the same underlying content; and the relationships among

all these possibilities can grow very intricate. Here’s a type of problem

one encounters when reasoning about a structure like this. Consider a

piece of hypertext fiction built on a graph G = (V , E) in which there are

certain crucial thematic elements: love, death, war, an intense desire to

major in computer science, and so forth. Each thematic element i is rep-

resented by a set Ti ⊆ V consisting of the nodes in G at which this theme

4 See, e.g., http://www.eastgate.com.

http://www.eastgate.com

510 Chapter 8 NP and Computational Intractability

appears. Now, given a particular set of thematic elements, we may ask: Is

there a valid plot of the story in which each of these elements is encoun-

tered? More concretely, given a directed graph G, with start node s and

end node t, and thematic elements represented by sets T1, T2, . . . , Tk, the

Plot Fulfillment Problem asks: Is there a path from s to t that contains at

least one node from each of the sets Ti?

Prove that Plot Fulfillment is NP-complete.

12. Some friends of yours maintain a popular news and discussion site on

the Web, and the traffic has reached a level where they want to begin

differentiating their visitors into paying and nonpaying customers. A

standard way to do this is to make all the content on the site available to

customers who pay a monthly subscription fee; meanwhile, visitors who

don’t subscribe can still view a subset of the pages (all the while being

bombarded with ads asking them to become subscribers).

Here are two simple ways to control access for nonsubscribers: You

could (1) designate a fixed subset of pages as viewable by nonsubscribers,

or (2) allow any page in principle to be viewable, but specify a maximum

number of pages that can be viewed by a nonsubscriber in a single session.

(We’ll assume the site is able to track the path followed by a visitor

through the site.)

Your friends are experimenting with a way of restricting access that

is different from and more subtle than either of these two options.

They want nonsubscribers to be able to sample different sections of the

Web site, so they designate certain subsets of the pages as constituting

particular zones—for example, there can be a zone for pages on politics,

a zone for pages on music, and so forth. It’s possible for a page to belong

to more than one zone. Now, as a nonsubscribing user passes through

the site, the access policy allows him or her to visit one page from each

zone, but an attempt by the user to access a second page from the same

zone later in the browsing session will be disallowed. (Instead, the user

will be directed to an ad suggesting that he or she become a subscriber.)

More formally, we canmodel the site as a directed graph G = (V , E), in

which the nodes represent Web pages and the edges represent directed

hyperlinks. There is a distinguished entry node s ∈ V, and there are zones

Z1, . . . , Zk ⊆ V. A path P taken by a nonsubscriber is restricted to include

at most one node from each zone Zi.

One issue with this more complicated access policy is that it gets

difficult to answer even basic questions about reachability, including: Is

it possible for a nonsubscriber to visit a given node t? More precisely, we

define the Evasive Path Problem as follows: Given G, Z1, . . . , Zk, s ∈ V, and

Exercises 511

a destination node t ∈ V, is there an s-t path in G that includes at most one

node from each zone Zi? Prove that Evasive Path is NP-complete.

13. A combinatorial auction is a particular mechanism developed by econo-

mists for selling a collection of items to a collection of potential buyers.

(The Federal Communications Commission has studied this type of auc-

tion for assigning stations on the radio spectrum to broadcasting com-

panies.)

Here’s a simple type of combinatorial auction. There are n items for

sale, labeled I1, . . . , In. Each item is indivisible and can only be sold to one

person. Now, m different people place bids: The ith bid specifies a subset

Si of the items, and an offering price xi that the bidder is willing to pay

for the items in the set Si, as a single unit. (We’ll represent this bid as the

pair (Si, xi).)

An auctioneer now looks at the set of all m bids; she chooses to

accept some of these bids and to reject the others. Each person whose

bid i is accepted gets to take all the items in the corresponding set Si.

Thus the rule is that no two accepted bids can specify sets that contain

a common item, since this would involve giving the same item to two

different people.

The auctioneer collects the sum of the offering prices of all accepted

bids. (Note that this is a “one-shot” auction; there is no opportunity to

place further bids.) The auctioneer’s goal is to collect as much money as

possible.

Thus, the problem of Winner Determination for Combinatorial Auc-

tions asks: Given items I1, . . . , In, bids (S1, x1), . . . , (Sm, xm), and a bound B,

is there a collection of bids that the auctioneer can accept so as to collect

an amount of money that is at least B?

Example. Suppose an auctioneer decides to use this method to sell some

excess computer equipment. There are four items labeled “PC,” “moni-

tor,” “printer”, and “scanner”; and three people place bids. Define

S1 = {PC, monitor}, S2 = {PC, printer}, S3 = {monitor, printer, scanner}

and

x1 = x2 = x3 = 1.

The bids are (S1, x1), (S2, x2), (S3, x3), and the bound B is equal to 2.

Then the answer to this instance is no: The auctioneer can accept at

most one of the bids (since any two bids have a desired item in common),

and this results in a total monetary value of only 1.

512 Chapter 8 NP and Computational Intractability

Prove that the problem of Winner Determination in Combinatorial

Auctions is NP-complete.

14. We’ve seen the Interval Scheduling Problem in Chapters 1 and 4. Here

we consider a computationally much harder version of it that we’ll call

Multiple Interval Scheduling. As before, you have a processor that is

available to run jobs over some period of time (e.g., 9 A.M. to 5 P.M).

People submit jobs to run on the processor; the processor can only

work on one job at any single point in time. Jobs in this model, however,

are more complicated than we’ve seen in the past: each job requires a

set of intervals of time during which it needs to use the processor. Thus,

for example, a single job could require the processor from 10 A.M. to

11 A.M., and again from 2 P.M. to 3 P.M.. If you accept this job, it ties up

your processor during those two hours, but you could still accept jobs

that need any other time periods (including the hours from 11 A.M. to

2 A.M.).

Now you’re given a set of n jobs, each specified by a set of time

intervals, and you want to answer the following question: For a given

number k, is it possible to accept at least k of the jobs so that no two of

the accepted jobs have any overlap in time?

Show that Multiple Interval Scheduling is NP-complete.

15. You’re sitting at your desk one day when a FedEx package arrives for

you. Inside is a cell phone that begins to ring, and you’re not entirely

surprised to discover that it’s your friend Neo, whom you haven’t heard

from in quite a while. Conversations with Neo all seem to go the same

way: He starts out with some big melodramatic justification for why he’s

calling, but in the end it always comes down to him trying to get you to

volunteer your time to help with some problem he needs to solve.

This time, for reasons he can’t go into (something having to do

with protecting an underground city from killer robot probes), he and

a few associates need to monitor radio signals at various points on the

electromagnetic spectrum. Specifically, there are n different frequencies

that need monitoring, and to do this they have available a collection of

sensors.

There are two components to the monitoring problem.

. A set L of m geographic locations at which sensors can be placed; and

. A set S of b interference sources, each of which blocks certain fre-

quencies at certain locations. Specifically, each interference source i

is specified by a pair (Fi, Li), where Fi is a subset of the frequencies

and Li is a subset of the locations; it signifies that (due to radio inter-

Exercises 513

ference) a sensor placed at any location in the set Li will not be able

to receive signals on any frequency in the set Fi.

We say that a subset L′ ⊆ L of locations is sufficient if, for each of the n

frequencies j, there is some location in L′ where frequency j is not blocked

by any interference source. Thus, by placing a sensor at each location in

a sufficient set, you can successfully monitor each of the n frequencies.

They have k sensors, and hence they want to know whether there is

a sufficient set of locations of size at most k. We’ll call this an instance

of the Nearby Electromagnetic Observation Problem: Given frequencies,

locations, interference sources, and a parameter k, is there a sufficient

set of size at most k?

Example. Supposewehave four frequencies {f1, f2, f3, f4} and four locations

{ℓ1, ℓ2, ℓ3, ℓ4}. There are three interference sources, with

(F1, L1) = ({f1, f2}, {ℓ1, ℓ2, ℓ3})

(F2, L2) = ({f3, f4}, {ℓ3, ℓ4})

(F3, L3) = ({f2, f3}, {ℓ1})

Then there is a sufficient set of size 2: We can choose locations ℓ2 and ℓ4

(since f1 and f2 are not blocked at ℓ4, and f3 and f4 are not blocked at ℓ2).

Prove that Nearby Electromagnetic Observation is NP-complete.

16. Consider the problem of reasoning about the identity of a set from the

size of its intersections with other sets. You are given a finite set U of size

n, and a collection A1, . . . , Am of subsets of U . You are also given numbers

c1, . . . , cm. The question is: Does there exist a set X ⊂ U so that for each

i = 1, 2, . . . , m, the cardinality of X ∩ Ai is equal to ci? We will call this an

instance of the Intersection Inference Problem, with input U , {Ai}, and {ci}.

Prove that Intersection Inference is NP-complete.

17. You are given a directed graph G = (V , E)withweightswe on its edges e ∈ E.

The weights can be negative or positive. The Zero-Weight-Cycle Problem

is to decide if there is a simple cycle in G so that the sum of the edge

weights on this cycle is exactly 0. Prove that this problem is NP-complete.

18. You’ve been asked to help some organizational theorists analyze data on

group decision-making. In particular, they’ve been looking at a dataset

that consists of decisions made by a particular governmental policy

committee, and they’re trying to decide whether it’s possible to identify

a small set of influential members of the committee.

Here’s how the committee works. It has a set M = {m1, . . . , mn} of n

members, and over the past year it’s voted on t different issues. On each

issue, each member can vote either “Yes,” “No,” or “Abstain”; the overall

514 Chapter 8 NP and Computational Intractability

effect is that the committee presents an affirmative decision on the issue

if the number of “Yes” votes is strictly greater than the number of “No”

votes (the “Abstain” votes don’t count for either side), and it delivers a

negative decision otherwise.

Nowwe have a big table consisting of the vote cast by each committee

member on each issue, and we’d like to consider the following definition.

We say that a subset of the members M ′ ⊆ M is decisive if, had we looked

just at the votes cast by the members in M ′, the committee’s decision

on every issue would have been the same. (In other words, the overall

outcome of the voting among the members in M ′ is the same on every

issue as the overall outcome of the voting by the entire committee.) Such

a subset can be viewed as a kind of “inner circle” that reflects the behavior

of the committee as a whole.

Here’s the question: Given the votes cast by each member on each

issue, and given a parameter k, we want to know whether there is a deci-

sive subset consisting of at most k members. We’ll call this an instance

of the Decisive Subset Problem.

Example. Suppose we have four committee members and three issues.

We’re looking for a decisive set of size at most k = 2, and the voting went

as follows.

Issue # m1 m2 m3 m4

Issue 1 Yes Yes Abstain No

Issue 2 Abstain No No Abstain

Issue 3 Yes Abstain Yes Yes

Then the answer to this instance is “Yes,” since members m1 and m3

constitute a decisive subset.

Prove that Decisive Subset is NP-complete.

19. Suppose you’re acting as a consultant for the port authority of a small

Pacific Rim nation. They’re currently doing amulti-billion-dollar business

per year, and their revenue is constrained almost entirely by the rate at

which they can unload ships that arrive in the port.

Handling hazardous materials adds additional complexity to what is,

for them, an already complicated task. Suppose a convoy of ships arrives

in the morning and delivers a total of n cannisters, each containing a

different kind of hazardous material. Standing on the dock is a set of m

trucks, each of which can hold up to k containers.

Exercises 515

Here are two related problems, which arise from different types of

constraints that might be placed on the handling of hazardous materials.

For each of the two problems, give one of the following two answers:

. A polynomial-time algorithm to solve it; or

. A proof that it is NP-complete.

(a) For each cannister, there is a specified subset of the trucks in which

it may be safely carried. Is there a way to load all n cannisters into

the m trucks so that no truck is overloaded, and each container goes

in a truck that is allowed to carry it?

(b) In this different version of the problem, any cannister can be placed

in any truck; however, there are certain pairs of cannisters that

cannot be placed together in the same truck. (The chemicals they

contain may react explosively if brought into contact.) Is there a

way to load all n cannisters into the m trucks so that no truck is

overloaded, and no two cannisters are placed in the same truck when

they are not supposed to be?

20. There are many different ways to formalize the intuitive problem of

clustering, where the goal is to divide up a collection of objects into

groups that are “similar” to one another.

First, a natural way to express the input to a clustering problem is via

a set of objects p1, p2, . . . , pn, with a numerical distance d(pi, pj) defined on

each pair. (We require only that d(pi, pi) = 0; that d(pi, pj) > 0 for distinct

pi and pj; and that distances are symmetric: d(pi, pj) = d(pj , pi).)

In Section 4.7, earlier in the book, we considered one reasonable

formulation of the clustering problem: Divide the objects into k sets so

as to maximize the minimum distance between any pair of objects in

distinct clusters. This turns out to be solvable by a nice application of

the Minimum Spanning Tree Problem.

A different but seemingly related way to formalize the clustering

problem would be as follows: Divide the objects into k sets so as to

minimize the maximum distance between any pair of objects in the

same cluster. Note the change. Where the formulation in the previous

paragraph sought clusters so that no two were “close together,” this new

formulation seeks clusters so that none of them is too “wide”—that is,

no cluster contains two points at a large distance from each other.

Given the similarities, it’s perhaps surprising that this new formula-

tion is computationally hard to solve optimally. To be able to think about

this in terms of NP-completeness, let’s write it first as a yes/no decision

problem. Given n objects p1, p2, . . . , pn with distances on them as above,

516 Chapter 8 NP and Computational Intractability

and a bound B, we define the Low-Diameter Clustering Problem as fol-

lows: Can the objects be partitioned into k sets, so that no two points in

the same set are at a distance greater than B from each other?

Prove that Low-Diameter Clustering is NP-complete.

21. After a few too many days immersed in the popular entrepreneurial self-

help book Mine Your Own Business, you’ve come to the realization that

you need to upgrade your office computing system. This, however, leads

to some tricky problems.

In configuring your new system, there are k components that must

be selected: the operating system, the text editing software, the e-mail

program, and so forth; each is a separate component. For the jth compo-

nent of the system, you have a set Aj of options; and a configuration of

the system consists of a selection of one element from each of the sets

of options A1, A2, . . . , Ak.

Now the trouble arises because certain pairs of options fromdifferent

sets may not be compatible. We say that option xi ∈ Ai and option xj ∈ Aj

form an incompatible pair if a single system cannot contain them both.

(For example, Linux (as an option for the operating system) and Microsoft

Word (as an option for the text-editing software) form an incompatible

pair.) We say that a configuration of the system is fully compatible if it

consists of elements x1 ∈ A1, x2 ∈ A2, . . . xk ∈ Ak such that none of the pairs

(xi, xj) is an incompatible pair.

We can now define the Fully Compatible Configuration (FCC) Problem.

An instance of FCC consists of disjoint sets of optionsA1, A2, . . . , Ak, and a

set P of incompatible pairs (x, y), where x and y are elements of different

sets of options. The problem is to decide whether there exists a fully

compatible configuration: a selection of an element from each option set

so that no pair of selected elements belongs to the set P.

Example. Suppose k = 3, and the sets A1, A2, A3 denote options for the

operating system, the text-editing software, and the e-mail program,

respectively. We have

A1 = {Linux, Windows NT},

A2 = {emacs, Word},

A3 = {Outlook, Eudora, rmail},

with the set of incompatible pairs equal to

P = {(Linux, Word), (Linux, Outlook), (Word, rmail)}.

Exercises 517

Then the answer to the decision problem in this instance of FCC is

yes—for example, the choices Linux ∈ A1, emacs∈ A2, rmail∈ A3 is a fully

compatible configuration according to the definitions above.

Prove that Fully Compatible Configuration is NP-complete.

22. Suppose that someone gives you a black-box algorithm A that takes an

undirected graph G = (V , E), and a number k, and behaves as follows.

. If G is not connected, it simply returns “G is not connected.”

. If G is connected and has an independent set of size at least k, it

returns “yes.”

. If G is connected and does not have an independent set of size at

least k, it returns “no.”

Suppose that the algorithm A runs in time polynomial in the size of G

and k.

Show how, using calls to A, you could then solve the Independent Set

Problem in polynomial time: Given an arbitrary undirected graph G, and

a number k, does G contain an independent set of size at least k?

23. Given a set of finite binary strings S = {s1, . . . , sk}, we say that a string

u is a concatenation over S if it is equal to si1
si2

. . . sit
for some indices

i1, . . . , it ∈ {1, . . . , k}.

A friend of yours is considering the following problem: Given two

sets of finite binary strings, A = {a1, . . . , am} and B = {b1, . . . , bn}, does

there exist any string u so that u is both a concatenation over A and a

concatenation over B?

Your friend announces, “At least the problem is in NP, since I would

just have to exhibit such a string u in order to prove the answer is yes.”

You point out (politely, of course) that this is a completely inadequate

explanation; how do we know that the shortest such string u doesn’t

have length exponential in the size of the input, in which case it would

not be a polynomial-size certificate?

However, it turns out that this claim can be turned into a proof of

membership in NP. Specifically, prove the following statement.

If there is a string u that is a concatenation over both A and B, then there

is such a string whose length is bounded by a polynomial in the sum of the

lengths of the strings in A ∪ B.

24. Let G = (V , E) be a bipartite graph; suppose its nodes are partitioned into

sets X and Y so that each edge has one end in X and the other in Y. We

define an (a, b)-skeleton of G to be a set of edges E′ ⊆ E so that at most

518 Chapter 8 NP and Computational Intractability

a nodes in X are incident to an edge in E′, and at least b nodes in Y are

incident to an edge in E′.

Show that, given a bipartite graph G and numbers a and b, it is NP-

complete to decide whether G has an (a, b)-skeleton.

25. For functions g1, . . . , gℓ, we define the function max(g1, . . . , gℓ) via

[max(g1, . . . , gℓ)](x) = max(g1(x), . . . , gℓ(x)).

Consider the following problem. You are given n piecewise linear,

continuous functions f1, . . . , fn defined over the interval [0, t] for some

integer t. You are also given an integer B. You want to decide: Do there

exist k of the functions fi1, . . . , fik so that

∫ t

0
[max(fi1, . . . , fik)](x) dx ≥ B?

Prove that this problem is NP-complete.

26. You and a friend have been trekking through various far-off parts of

the world and have accumulated a big pile of souvenirs. At the time you

weren’t really thinking about which of these you were planning to keep

and which your friend was going to keep, but now the time has come to

divide everything up.

Here’s a way you could go about doing this. Suppose there are n

objects, labeled 1, 2, . . . , n, and object i has an agreed-upon value xi. (We

could think of this, for example, as a monetary resale value; the case in

which you and your friend don’t agree on the value is something we won’t

pursue here.) One reasonable way to divide things would be to look for a

partition of the objects into two sets, so that the total value of the objects

in each set is the same.

This suggests solving the following Number Partitioning Problem.

You are given positive integers x1, . . . , xn; you want to decide whether

the numbers can be partitioned into two sets S1 and S2 with the same

sum:

∑

xi∈S1

xi =
∑

xj∈S2

xj.

Show that Number Partitioning is NP-complete.

27. Consider the following problem. You are given positive integers x1, . . . , xn,

and numbers k and B. You want to knowwhether it is possible to partition

Exercises 519

the numbers {xi} into k sets S1, . . . , Sk so that the squared sums of the sets

add up to at most B:

k
∑

i=1

⎛

⎝

∑

xj∈Si

xj

⎞

⎠

2

≤ B.

Show that this problem is NP-complete.

28. The following is a version of the Independent Set Problem. You are given

a graph G = (V , E) and an integer k. For this problem, we will call a set

I ⊂ V strongly independent if, for any two nodes v, u ∈ I, the edge (v, u)

does not belong to E, and there is also no path of two edges from u to

v, that is, there is no node w such that both (u, w) ∈ E and (w, v) ∈ E. The

Strongly Independent Set Problem is to decide whether G has a strongly

independent set of size at least k.

Prove that the Strongly Independent Set Problem is NP-complete.

29. You’re configuring a large network of workstations, which we’ll model as

an undirected graph G; the nodes of G represent individual workstations

and the edges represent direct communication links. The workstations all

need access to a common core database, which contains data necessary

for basic operating system functions.

You could replicate this database on each workstation; this would

make lookups very fast from any workstation, but you’d have to manage

a huge number of copies. Alternately, you could keep a single copy of the

database on one workstation and have the remaining workstations issue

requests for data over the network G; but this could result in large delays

for a workstation that’s many hops away from the site of the database.

So you decide to look for the following compromise: You want to

maintain a small number of copies, but place them so that any worksta-

tion either has a copy of the database or is connected by a direct link to a

workstation that has a copy of the database. In graph terminology, such

a set of locations is called a dominating set .

Thus we phrase the Dominating Set Problem as follows. Given the

network G, and a number k, is there a way to place k copies of the database

at k different nodes so that every node either has a copy of the database

or is connected by a direct link to a node that has a copy of the database?

Show that Dominating Set is NP-complete.

30. One thing that’s not always apparent when thinking about traditional

“continuous math” problems is the way discrete, combinatorial issues

520 Chapter 8 NP and Computational Intractability

of the kind we’re studying here can creep into what look like standard

calculus questions.

Consider, for example, the traditional problem of minimizing a one-

variable function like f (x) = 3 + x − 3x2 over an interval like x ∈ [0, 1].

The derivative has a zero at x = 1/6, but this in fact is a maximum of

the function, not a minimum; to get the minimum, one has to heed

the standard warning to check the values on the boundary of the in-

terval as well. (The minimum is in fact achieved on the boundary, at

x = 1.)

Checking the boundary isn’t such a problemwhen youhave a function

in one variable; but suppose we’re now dealing with the problem of

minimizing a function in n variables x1, x2, . . . , xn over the unit cube,

where each of x1, x2, . . . , xn ∈ [0, 1]. The minimum may be achieved on

the interior of the cube, but it may be achieved on the boundary; and

this latter prospect is rather daunting, since the boundary consists of 2n

“corners” (where each xi is equal to either 0or 1) aswell as various pieces of

other dimensions. Calculus books tend to get suspiciously vague around

here, when trying to describe how to handle multivariable minimization

problems in the face of this complexity.

It turns out there’s a reason for this: Minimizing an n-variable func-

tion over the unit cube in n dimensions is as hard as an NP-complete

problem. To make this concrete, let’s consider the special case of poly-

nomials with integer coefficients over n variables x1, x2, . . . , xn. To review

some terminology, we say a monomial is a product of a real-number co-

efficient c and each variable xi raised to some nonnegative integer power

ai; we can write this as cx
a1
1 x

a2
2

. . . x
an
n . (For example, 2x2

1x2x
4
3 is a monomial.)

A polynomial is then a sum of a finite set of monomials. (For example,

2x2
1x2x

4
3 + x1x3 − 6x2

2x
2
3 is a polynomial.)

We define the Multivariable Polynomial Minimization Problem as fol-

lows: Given a polynomial in n variableswith integer coefficients, and given

an integer bound B, is there a choice of real numbers x1, x2, . . . , xn ∈ [0, 1]

that causes the polynomial to achieve a value that is ≤ B?

Choose a problem Y from this chapter that is known to be NP-

complete and show that

Y ≤P Multivariable Polynomial Minimization.

31. Given an undirected graph G = (V , E), a feedback set is a set X ⊆ V with the

property that G − X has no cycles. The Undirected Feedback Set Problem

asks: Given G and k, does G contain a feedback set of size at most k? Prove

that Undirected Feedback Set is NP-complete.

Exercises 521

32. Themapping of genomes involves a large array of difficult computational

problems. At the most basic level, each of an organism’s chromosomes

can be viewed as an extremely long string (generally containing millions

of symbols) over the four-letter alphabet {A, C , G, T}. One family of ap-

proaches to genome mapping is to generate a large number of short,

overlapping snippets from a chromosome, and then to infer the full long

string representing the chromosome from this set of overlapping sub-

strings.

While we won’t go into these string assembly problems in full detail,

here’s a simplified problem that suggests some of the computational dif-

ficulty one encounters in this area. Supposewe have a set S = {s1, s2, . . . , sn}

of short DNA strings over a q-letter alphabet; and each string si has length

2ℓ, for some number ℓ ≥ 1. We also have a library of additional strings

T = {t1, t2, . . . , tm} over the same alphabet; each of these also has length

2ℓ. In trying to assess whether the string sb might come directly after the

string sa in the chromosome, we will look to see whether the library T

contains a string tk so that the first ℓ symbols in tk are equal to the last ℓ

symbols in sa, and the last ℓ symbols in tk are equal to the first ℓ symbols

in sb. If this is possible, we will say that tk corroborates the pair (sa , sb).

(In other words, tk could be a snippet of DNA that straddled the region

in which sb directly followed sa.)

Now we’d like to concatenate all the strings in S in some order,

one after the other with no overlaps, so that each consecutive pair is

corroborated by some string in the library T . That is, we’d like to order

the strings in S as si1
, si2

, . . . , sin
, where i1, i2, . . . , in is a permutation of

{1, 2, . . . , n}, so that for each j = 1, 2, . . . , n − 1, there is a string tk that

corroborates the pair (sij
, sij+1

). (The same string tk can be used for more

than one consecutive pair in the concatenation.) If this is possible, we will

say that the set S has a perfect assembly .

Given sets S and T , the Perfect Assembly Problem asks: Does S have

a perfect assembly with respect to T? Prove that Perfect Assembly is NP-

complete.

Example. Suppose the alphabet is {A, C , G, T}, the set S = {AG, TC , TA}, and

the set T = {AC , CA, GC , GT} (so each string has length 2ℓ = 2). Then the

answer to this instance of Perfect Assembly is yes: We can concatenate

the three strings in S in the order TCAGTA (so si1
= s2, si2

= s1, and si3
= s3). In

this order, the pair (si1
, si2

) is corroborated by the string CA in the library

T , and the pair (si2
, si3

) is corroborated by the string GT in the library T .

33. In a barter economy, people trade goods and services directly, without

money as an intermediate step in the process. Trades happen when each

522 Chapter 8 NP and Computational Intractability

party views the set of goods they’re getting as more valuable than the set

of goods they’re giving in return. Historically, societies tend tomove from

barter-based to money-based economies; thus various online systems

that have been experimenting with barter can be viewed as intentional

attempts to regress to this earlier form of economic interaction. In doing

this, they’ve rediscovered some of the inherent difficulties with barter

relative to money-based systems. One such difficulty is the complexity

of identifying opportunities for trading, even when these opportunities

exist.

To model this complexity, we need a notion that each person assigns

a value to each object in the world, indicating howmuch this object would

be worth to them. Thus we assume there is a set of n people p1, . . . , pn,

and a set of m distinct objects a1, . . . , am. Each object is owned by one

of the people. Now each person pi has a valuation function vi, defined so

that vi(aj) is a nonnegative number that specifies how much object aj is

worth to pi—the larger the number, the more valuable the object is to the

person. Note that everyone assigns a valuation to each object, including

the ones they don’t currently possess, and different people can assign

very different valuations to the same object.

A two-person trade is possible in a system like this when there are

people pi and pj, and subsets of objects Ai and Aj possessed by pi and pj,

respectively, so that each person would prefer the objects in the subset

they don’t currently have. More precisely,

. pi’s total valuation for the objects in Aj exceeds his or her total

valuation for the objects in Ai, and

. pj’s total valuation for the objects in Ai exceeds his or her total

valuation for the objects in Aj.

(Note that Ai doesn’t have to be all the objects possessed by pi (and

likewise for Aj); Ai and Aj can be arbitrary subsets of their possessions

that meet these criteria.)

Suppose you are given an instance of a barter economy, specified

by the above data on people’s valuations for objects. (To prevent prob-

lems with representing real numbers, we’ll assume that each person’s

valuation for each object is a natural number.) Prove that the problem of

determining whether a two-person trade is possible is NP-complete.

34. In the 1970s, researchers including Mark Granovetter and Thomas

Schelling in the mathematical social sciences began trying to develop

models of certain kinds of collective human behaviors: Why do particu-

lar fads catch on while others die out? Why do particular technological

innovations achieve widespread adoption, while others remain focused

Exercises 523

on a small group of users? What are the dynamics by which rioting and

looting behavior sometimes (but only rarely) emerges from a crowd of

angry people? They proposed that these are all examples of cascade

processes, in which an individual’s behavior is highly influenced by the

behaviors of his or her friends, and so if a few individuals instigate the

process, it can spread to more and more people and eventually have a

very wide impact. We can think of this process as being like the spread

of an illness, or a rumor, jumping from person to person.

Themost basic version of their models is the following. There is some

underlying behavior (e.g., playing ice hockey, owning a cell phone, taking

part in a riot), and at any point in time each person is either an adopter of

the behavior or a nonadopter . We represent the population by a directed

graph G = (V , E) in which the nodes correspond to people and there is

an edge (v, w) if person v has influence over the behavior of person w: If

person v adopts the behavior, then this helps induce person w to adopt

it as well. Each person w also has a given threshold θ(w) ∈ [0, 1], and this

has the following meaning: At any time when at least a θ(w) fraction of

the nodes with edges to w are adopters of the behavior, the node w will

become an adopter as well.

Note that nodes with lower thresholds are more easily convinced

to adopt the behavior, while nodes with higher thresholds are more

conservative. A node w with threshold θ(w) = 0 will adopt the behavior

immediately, with no inducement from friends. Finally, we need a conven-

tion about nodes with no incoming edges: We will say that they become

adopters if θ(w) = 0, and cannot become adopters if they have any larger

threshold.

Given an instance of this model, we can simulate the spread of the

behavior as follows.

Initially, set all nodes w with θ(w) = 0 to be adopters

(All other nodes start out as nonadopters)

Until there is no change in the set of adopters:

For each nonadopter w simultaneously:

If at least a θ(w) fraction of nodes with edges to w are

adopters then

w becomes an adopter

Endif

Endfor

End

Output the final set of adopters

524 Chapter 8 NP and Computational Intractability

Note that this process terminates, since there are only n individuals total,

and at least one new person becomes an adopter in each iteration.

Now, in the last few years, researchers in marketing and data min-

ing have looked at how a model like this could be used to investigate

“word-of-mouth” effects in the success of new products (the so-called

viral marketing phenomenon). The idea here is that the behavior we’re

concerned with is the use of a new product; we may be able to convince

a few key people in the population to try out this product, and hope to

trigger as large a cascade as possible.

Concretely, suppose we choose a set of nodes S ⊆ V and we reset the

threshold of each node in S to 0. (By convincing them to try the product,

we’ve ensured that they’re adopters.) We then run the process described

above, and see how large the final set of adopters is. Let’s denote the size

of this final set of adopters by f (S) (note that we write it as a function of

S, since it naturally depends on our choice of S). We could think of f (S)

as the influence of the set S, since it captures how widely the behavior

spreads when “seeded” at S.

The goal, if we’re marketing a product, is to find a small set S

whose influence f (S) is as large as possible. We thus define the Influence

Maximization Problem as follows: Given a directed graph G = (V , E), with

a threshold value at each node, and parameters k and b, is there a set S

of at most k nodes for which f (S) ≥ b?

Prove that Influence Maximization is NP-complete.

Example. Suppose our graph G = (V , E) has five nodes {a, b, c, d, e}, four

edges (a, b), (b, c), (e, d), (d, c), and all node thresholds equal to 2/3. Then

the answer to the Influence Maximization instance defined by G, with

k = 2 and b = 5, is yes: We can choose S = {a, e}, and this will cause the

other three nodes to become adopters as well. (This is the only choice of

S that will work here. For example, if we choose S = {a, d}, then b and c

will become adopters, but e won’t; if we choose S = {a, b}, then none of c,

d, or e will become adopters.)

35. Three of your friends work for a large computer-game company, and

they’ve been working hard for several months now to get their proposal

for a new game, Droid Trader! , approved by higher management. In

the process, they’ve had to endure all sorts of discouraging comments,

ranging from “You’re really going to have to work with Marketing on the

name” to “Why don’t you emphasize the parts where people get to kick

each other in the head?”

At this point, though, it’s all but certain that the game is really

heading into production, and your friends come to you with one final

Exercises 525

issue that’s been worrying them: What if the overall premise of the game

is too simple, so that players get really good at it and become bored too

quickly?

It takes you awhile, listening to their detailed description of the game,

to figure out what’s going on; but once you strip away the space battles,

kick-boxing interludes, and Stars-Wars-inspired pseudo-mysticism, the

basic idea is as follows. A player in the game controls a spaceship and

is trying to make money buying and selling droids on different planets.

There are n different types of droids and k different planets. Each planet p

has the following properties: there are s(j, p) ≥ 0 droids of type j available

for sale, at a fixed price of x(j, p) ≥ 0 each, for j = 1, 2, . . . , n; and there

is a demand for d(j, p) ≥ 0 droids of type j, at a fixed price of y(j, p) ≥ 0

each. (We will assume that a planet does not simultaneously have both a

positive supply and a positive demand for a single type of droid; so for

each j, at least one of s(j, p) or d(j, p) is equal to 0.)

The player begins on planet s with z units of money and must end

at planet t; there is a directed acyclic graph G on the set of planets, such

that s-t paths in G correspond to valid routes by the player. (G is chosen

to be acyclic to prevent arbitrarily long games.) For a given s-t path P in

G, the player can engage in transactions as follows. Whenever the player

arrives at a planet p on the path P, she can buy up to s(j, p) droids of type

j for x(j, p) units of money each (provided she has sufficient money on

hand) and/or sell up to d(j, p) droids of type j for y(j, p) units of money

each (for j = 1, 2, . . . , n). The player’s final score is the total amount of

money she has on handwhen she arrives at planet t. (There are also bonus

points based on space battles and kick-boxing, which we’ll ignore for the

purposes of formulating this question.)

So basically, the underlying problem is to achieve a high score. In

other words, given an instance of this game, with a directed acyclic graph

G on a set of planets, all the other parameters described above, and also

a target bound B, is there a path P in G and a sequence of transactions

on P so that the player ends with a final score that is at least B? We’ll call

this an instance of the High-Score-on-Droid-Trader! Problem, or HSoDT!

for short.

Prove that HSoDT! is NP-complete, thereby guaranteeing (assuming

P �= NP) that there isn’t a simple strategy for racking up high scores on

your friends’ game.

36. Sometimes you can know people for years and never really understand

them. Take your friends Raj and Alanis, for example. Neither of them is

a morning person, but now they’re getting up at 6 AM every day to visit

526 Chapter 8 NP and Computational Intractability

local farmers’ markets, gathering fresh fruits and vegetables for the new

health-food restaurant they’ve opened, Chez Alanisse.

In the course of trying to save money on ingredients, they’ve come

across the following thorny problem. There is a large set of n possible raw

ingredients they could buy, I1, I2, . . . , In (e.g., bundles of dandelion greens,

jugs of rice vinegar, and so forth). Ingredient Ij must be purchased in units

of size s(j) grams (any purchase must be for a whole number of units),

and it costs c(j) dollars per unit. Also, it remains safe to use for t(j) days

from the date of purchase.

Now, over the next k days, they want to make a set of k different daily

specials, one each day. (The order in which they schedule the specials

is up to them.) The ith daily special uses a subset Si ⊆ {I1, I2, . . . , In} of

the raw ingredients. Specifically, it requires a(i, j) grams of ingredient Ij.

And there’s a final constraint: The restaurant’s rabidly loyal customer

base only remains rabidly loyal if they’re being served the freshest meals

available; so for each daily special, the ingredients Si are partitioned into

two subsets: those that must be purchased on the very day when the daily

special is being offered, and those that can be used any day while they’re

still safe. (For example, the mesclun-basil salad special needs to be made

with basil that has been purchased that day; but the arugula-basil pesto

with Cornell dairy goat cheese special can use basil that is several days

old, as long as it is still safe.)

This is where the opportunity to save money on ingredients comes

up. Often, when they buy a unit of a certain ingredient Ij, they don’t need

the whole thing for the special they’re making that day. Thus, if they can

follow up quickly with another special that uses Ij but doesn’t require it to

be fresh that day, then they can save money by not having to purchase Ij

again. Of course, scheduling the basil recipes close together may make it

harder to schedule the goat cheese recipes close together, and so forth—

this is where the complexity comes in.

So we define the Daily Special Scheduling Problem as follows: Given

data on ingredients and recipes as above, and a budget x, is there a way to

schedule the k daily specials so that the total money spent on ingredients

over the course of all k days is at most x?

Prove that Daily Special Scheduling is NP-complete.

37. There are those who insist that the initial working title for Episode XXVII

of the Star Wars series was “P = NP”—but this is surely apocryphal. In any

case, if you’re so inclined, it’s easy to find NP-complete problems lurking

just below the surface of the original Star Wars movies.

Exercises 527

Consider the problem faced by Luke, Leia, and friends as they tried to

make their way from the Death Star back to the hidden Rebel base. We can

view the galaxy as an undirected graph G = (V , E), where each node is a

star system and an edge (u, v) indicates that one can travel directly from u

to v. The Death Star is represented by a node s, the hidden Rebel base by a

node t. Certain edges in this graph represent longer distances than others;

thus each edge e has an integer length ℓe ≥ 0. Also, certain edges represent

routes that are more heavily patrolled by evil Imperial spacecraft; so each

edge e also has an integer risk re ≥ 0, indicating the expected amount

of damage incurred from special-effects-intensive space battles if one

traverses this edge.

It would be safest to travel through the outer rim of the galaxy, from

one quiet upstate star system to another; but then one’s ship would run

out of fuel long before getting to its destination. Alternately, it would be

quickest to plunge through the cosmopolitan core of the galaxy; but then

there would be far too many Imperial spacecraft to deal with. In general,

for any path P from s to t, we can define its total length to be the sum of

the lengths of all its edges; and we can define its total risk to be the sum

of the risks of all its edges.

So Luke, Leia, and company are looking at a complex type of shortest-

path problem in this graph: they need to get from s to t along a path whose

total length and total risk are both reasonably small. In concrete terms, we

can phrase the Galactic Shortest-Path Problem as follows: Given a setup

as above, and integer bounds L and R, is there a path from s to t whose

total length is at most L, and whose total risk is at most R?

Prove that Galactic Shortest Path is NP-complete.

38. Consider the following version of the Steiner Tree Problem, which we’ll

refer to as Graphical Steiner Tree. You are given an undirected graph

G = (V , E), a set X ⊆ V of vertices, and a number k. You want to decide

whether there is a set F ⊆ E of at most k edges so that in the graph (V , F),

X belongs to a single connected component.

Show that Graphical Steiner Tree is NP-complete.

39. The Directed Disjoint Paths Problem is defined as follows. We are given

a directed graph G and k pairs of nodes (s1, t1), (s2, t2), . . . , (sk , tk). The

problem is to decide whether there exist node-disjoint paths P1, P2, . . . , Pk

so that Pi goes from si to ti.

Show that Directed Disjoint Paths is NP-complete.

40. Consider the following problem that arises in the design of broadcasting

schemes for networks. We are given a directed graph G = (V , E), with a

528 Chapter 8 NP and Computational Intractability

designated node r ∈ V and a designated set of “target nodes” T ⊆ V − {r}.

Each node v has a switching time sv, which is a positive integer.

At time 0, the node r generates amessage that it would like every node

in T to receive. To accomplish this, we want to find a scheme whereby r

tells some of its neighbors (in sequence), who in turn tell some of their

neighbors, and so on, until every node in T has received themessage.More

formally, a broadcast scheme is defined as follows. Node r may send a

copy of the message to one of its neighbors at time 0; this neighbor will

receive the message at time 1. In general, at time t ≥ 0, any node v that

has already received the message may send a copy of the message to

one of its neighbors, provided it has not sent a copy of the message in

any of the time steps t − sv + 1, t − sv + 2, . . . , t − 1. (This reflects the role

of the switching time; v needs a pause of sv − 1 steps between successive

sendings of themessage. Note that if sv = 1, then no restriction is imposed

by this.)

The completion time of the broadcast scheme is the minimum time t

by which all nodes in T have received the message. The Broadcast Time

Problem is the following: Given the input described above, and a bound

b, is there a broadcast scheme with completion time at most b?

Prove that Broadcast Time is NP-complete.

Example. Suppose we have a directed graph G = (V , E), with V =

{r , a, b, c}; edges (r , a), (a, b), (r , c); the set T = {b, c}; and switching time

sv = 2 for each v ∈ V. Then a broadcast scheme with minimum completion

time would be as follows: r sends the message to a at time 0; a sends

the message to b at time 1; r sends the message to c at time 2; and the

scheme completes at time 3when c receives the message. (Note that a can

send the message as soon as it receives it at time 1, since this is its first

sending of the message; but r cannot send the message at time 1 since

sr = 2 and it sent the message at time 0.)

41. Given a directed graph G, a cycle cover is a set of node-disjoint cycles

so that each node of G belongs to a cycle. The Cycle Cover Problem asks

whether a given directed graph has a cycle cover.

(a) Show that the Cycle Cover Problem can be solved in polynomial time.

(Hint: Use Bipartite Matching.)

(b) Suppose we require each cycle to have atmost three edges. Show that

determiningwhether a graphG has such a cycle cover is NP-complete.

42. Suppose you’re consulting for a company in northern New Jersey that

designs communication networks, and they come to you with the follow-

Notes and Further Reading 529

ing problem. They’re studying a specific n-node communication network,

modeled as a directed graphG = (V , E). For reasons of fault tolerance, they

want to divide up G into as many virtual “domains” as possible: A domain

in G is a set X of nodes, of size at least 2, so that for each pair of nodes

u, v ∈ X there are directed paths from u to v and v to u that are contained

entirely in X.

Show that the following Domain Decomposition Problem is NP-com-

plete. Given a directed graph G = (V , E) and a number k, can V be parti-

tioned into at least k sets, each of which is a domain?

Notes and Further Reading

In the notes to Chapter 2, we described some of the early work on formalizing

computational efficiency using polynomial time; NP-completeness evolved

out of this work and grew into its central role in computer science following

the papers of Cook (1971), Levin (1973), and Karp (1972). Edmonds (1965)

is credited with drawing particular attention to the class of problems in

NP ∩ co-NP—those with “good characterizations.” His paper also contains

the explicit conjecture that the Traveling Salesman Problem cannot be solved

in polynomial time, thereby prefiguring the P �= NP question. Sipser (1992) is

a useful guide to all of this historical context.

The book by Garey and Johnson (1979) provides extensive material on NP-

completeness and concludes with a very useful catalog of known NP-complete

problems. While this catalog, necessarily, only covers what was known at the

time of the book’s publication, it is still a very useful reference when one

encounters a new problem that looks like it might be NP-complete. In the

meantime, the space of known NP-complete problems has continued to expand

dramatically; as Christos Papadimitriou said in a lecture, “Roughly 6,000

papers every year contain an NP-completeness result. That means another

NP-complete problem has been discovered since lunch.” (His lecture was at

2:00 in the afternoon.)

One can interpret NP-completeness as saying that each individual NP-

complete problem contains the entire complexity of NP hidden inside it. A

concrete reflection of this is the fact that several of the NP-complete problems

we discuss here are the subject of entire books: the Traveling Salesman is the

subject of Lawler et al. (1985); Graph Coloring is the subject of Jensen and Toft

(1995); and the Knapsack Problem is the subject of Martello and Toth (1990).

NP-completeness results for scheduling problems are discussed in the survey

by Lawler et al. (1993).

530 Chapter 8 NP and Computational Intractability

Notes on the Exercises A number of the exercises illustrate further problems

that emerged as paradigmatic examples early in the development of NP-

completeness; these include Exercises 5, 26, 29, 31, 38, 39, 40, and 41.

Exercise 33 is based on discussions with Daniel Golovin, and Exercise 34

is based on our work with David Kempe. Exercise 37 is an example of the

class of Bicriteria Shortest-Path problems; its motivating application here was

suggested by Maverick Woo.

